# Каталог оборудования НПК РЭЛСИБ

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64

Ярославль (4852)69-52-93

сайт: www.relsib.nt-rt.ru || эл. почта: rbs@nt-rt.ru

# Содержание

| 1.    | Техническая информация                                                        |     |
|-------|-------------------------------------------------------------------------------|-----|
| 1.1   | Измерение температуры                                                         | 4   |
| 1.2   | Измерение влажности                                                           | 7   |
| 2.    | Измерители                                                                    |     |
| 2.1   | Измерители температуры переносные                                             |     |
| 21.1  | Измеритель температуры ИТ5-Т «Термит»                                         | 11  |
| 2.1.2 | Измеритель температуры поверхности цифровой переносной ИТ5-п/п-ЖД             | 12  |
| 2.1.3 | Измеритель температуры ИТ-7                                                   | 13  |
| 2.1.4 | Измеритель температуры переносной IT-8                                        | 14  |
| 2.2   | Термогигрометры                                                               |     |
| 2.2.1 | Термогигрометр ИТ5-TP «Термит»                                                | 18  |
| 2.2.2 | Гигрометр IT-8-RHT                                                            |     |
| 2.3   | Мультиметр IT-8-RUT прецизионный двухканальный                                | 21  |
| 2.4   | Индикатор температуры шестиканальный ИТ6-6                                    |     |
| 2.5   | Индикатор токовых сигналов ИТС 4-20                                           |     |
| 2.6   | Измерители влажности и температуры ИВИТ-М                                     | 25  |
| 3     | Регуляторы и термостаты                                                       |     |
| 3.1   | Термостат электронный ТЭ-01                                                   | 28  |
| 3.2   | Терморегулятор Ратар-01                                                       |     |
| 3.3   | Терморегулятор Ратар-02 с полууниверсальным входом                            | 30  |
| 3.4   | Терморегулятор Ратар-02-1                                                     | 32  |
| 3.5   | Регулятор температуры со встроенным таймером Ратар-02К                        | 33  |
| 3.6   | Терморегуляторы Ратар-02а, Ратар-02а-1                                        | 34  |
| 3.7   | Двухканальный Регулятор температуры Ратар-03.2УВ с универсальными входами     | 35  |
| 3.8   | Терморегулятор ПУСК-1 с таймером и функцией контроля влажности                | 37  |
| 4.    | Реле времени и таймеры                                                        |     |
| 4.1   | Реле времени PB-01M многофункциональное                                       | _   |
| 4.2   | Реле времени ТЕМП-1М                                                          |     |
| 43    | Реле времени ТЕМП-12                                                          |     |
| 4.4   | Таймер реального времени ТРВ-02                                               | 41  |
| 5.    | Счетчики импульсов и бесконтактные выключатели                                |     |
| 5.1   | Счетчик импульсов и оесконтактные выключатели                                 | //3 |
| 5.2   | Переключатели оптические ОПД                                                  |     |
| J.L   |                                                                               |     |
| 6.    | Автономные регистраторы (даталоггеры)                                         |     |
| 6.1   | Термохрон-Рэлсиб                                                              | 45  |
| 6.2   | Регистраторы EClerk-USB                                                       |     |
| 6.2.1 | Автономные регистраторы EClerk-USB в пластиковом мини корпусе                 |     |
| 6.2.2 | Автономные регистраторы EClerk-USB-x-Кl промышленные в герметичном корпусе Kl |     |
| 6.2.3 | Автономные регистраторы EClerk-USB-X-G промышленные в герметичном корпусе G   |     |
| 6.2.4 | Программное обеспечение для работы с регистраторами EClerk-USB                |     |
| 6.3   | Измерители-регистраторы EClerk-M                                              | 51  |

| 7.     | Приборы с беспроводной передачей данных                        |     |
|--------|----------------------------------------------------------------|-----|
| 7.1    | Сенсорная система NO-WI-SENS SYSTEM                            |     |
| 7.1.1  | Многоканальный измеритель-регистратор температуры WR-1-16-USB  | 54  |
| 7.1.2  | Беспроводной датчик температуры ST-1.1200.KL                   | 55  |
| 7.2    | Приборы и датчики дальнего радиуса действия                    |     |
| 7.2.1  | GSM-датчик температуры с функцией контроля протечки ST-GSM     | 56  |
| 7.2.2  | GSM-датчик температуры и отн.влажности SRHT-GSM                | 58  |
| 7.2.3  | GSM-измеритель-регулятор температуры многоканальный STR-GSM2-G |     |
| 8.     | Приборы контроля уровня и управления насосами                  |     |
| 8.1    | Контроллер уровня Контур-У универсальный                       | 63  |
| 8.2    | Датчики уровня, протечки кондуктометрические                   | 65  |
| 9.     | Блоки силовые                                                  |     |
| 9.1    | Блоки силовые симисторные БСС                                  |     |
| 9.2    | Блоки силовые тиристорные БСТ                                  | 68  |
| 10.    | Блоки питания                                                  |     |
| 10.1   | Блоки питания трансформаторные БП2                             |     |
| 10.2   | Блоки питания импульсные БП15, БП30                            |     |
| 10.3   | Блок питания импульсный БПГ12 герметичный                      | 71  |
| 11.    | Термопреобразователи                                           |     |
| 11.1   | Чувствительные элементы медные и платиновые                    | 72  |
| 11.2   | Термопреобразователи сопротивления с кабельным выводом         | 73  |
| 11.3   | Термопреобразователи сопротивления с клеммной головкой         | 76  |
| 11.4   | Термопреобразователи термоэлектрические                        | 79  |
| 11.5   | Термопреобразователи с токовым выходным сигналом 420 мА        | 81  |
| 11.6   | Преобразователи аналоговых сигналов ПАС-01                     | 83  |
| 11.7   | Арматура для подключения термопреобразователей                 | 84  |
| 12     | Датчики влажности и температуры                                |     |
| 12.1   | Датчики влажности и температуры ДВТ-03                         | 88  |
| 13.    | Устройства защиты по температуре                               |     |
| 13.1   | Термореле                                                      |     |
|        | Реле температурное PT-1                                        |     |
|        | Реле температурное РТ-3                                        |     |
|        | Реле температурные РТ-4 и РТ-5                                 | 94  |
| 13.2   | Полупроводниковые элементы                                     |     |
| 13.2.1 | Терморезистор прямого подогрева ТРП68-01                       | 95  |
| 13.2.2 | Светоизлучатель температурный СИТ68-01                         | 96  |
| 14.    | Устройства пусковые для систем пожаротушения                   |     |
| 14.1   | Устройство пусковое температурное УПТ-01                       | 97  |
| 14.2   | Устройство пусковое ручное УПР-01                              | 98  |
| 15.    | Шкафы автоматики и пульты управления                           |     |
| 15.1   | Блок управления электрокаменкой БУК-1                          | 99  |
| 15.2   | Шкаф управления освещением ШУО                                 | 101 |
| 16.    | Комплектующие изделия и материалы                              |     |
| 16.1   | Корпуса для приборов                                           | 102 |
| 16.2   | Кабели                                                         | 103 |
| 16.3   | Соединители медные и термопарные, разъемы                      | 104 |

# Измерение температуры

Из четырех величин Международной системы единиц (СИ), неразрывно связанных с человеческой деятельностью: массой, длиной, временем и температурой, последняя оставалась полной загадкой для человечества вплоть до 18 века. Но и сегодня немногие, пользующиеся различными средствами измерения температуры, понимают, что же они измеряют. То же давление легко воспринимается, так как оно связано с силой и может быть без труда определено количественно. С температурой невозможно связать количественную величину. В быту мы оцениваем температуру по ощущениям: горячо, тепло, холодно. Казалось бы, если одно тело горячее другого, то и его температура должна быть больше. Но это не так. Попробуйте взять в разогретой сауне в руку деревянный ковшик и металлический ковшик. Совершенно разные ощущения, хотя температура одна. Но если мы хотим сравнить температуру одинаковых по своей природе объектов, то можем сделать это с высокой точностью. Рукой можно определить, повышена ли температура другого человека, т.е. фактически измерить её с точностью ±0,5 °C. Также находясь в помещении можно с точностью до 1...2 °C определить её температуру. Человек хорошо чувствует этот физический параметр и в то же время мало кто сможет чётко сказать, что же это такое - температура. Забегая вперёд можно сказать, что совершенно обратная ситуация творится с влажностью воздуха. Очень

трудно определить влажность воздуха по своим ощущениям. В то же время эта характеристика прекрасно понимается в количественном выражении. Грубо – это количество молекул воды в единице объёма.

Существуют несколько определений температуры. Но мы воспользуемся здесь одним, который наиболее близок людям, занимаюшимся практическими измерениями и исходит из нулевого закона термодинамики. По нему если два тела находятся в состоянии теплового равновесия, то они имеют одинаковую температуру. Таким образом, если мы обеспечим хороший тепловой контакт термометра с измеряемой средой, то по прошествии некоторого времени, необходимого для установления теплового равновесия, температуры термометра и среды будут одинаковы. Естественно, что данный вывод будет верен только если наша система изолирована от других тел и не совершается никакой работы. Ну а само понимание физической природы температуры приходит только после изучения статистической механики, где температура представлена как мера кинетической энергии тела.

Принято считать, что первый термометр, работающий на расширении воздуха, был изобретён Галилеем примерно в 1592 г. А в 1641 году появился первый реально работающий спиртовой стеклянный термометр, созданный герцогом

Тосканским. С этого момента началось быстрое развитие термометрии. В начале 18-го века Фаренгейт первым изготовил ртутный стеклянный термометр и предложил температурную шкалу, в которой одной из фиксированных точек служила температура человеческого тела, которую он принял за 96 градусов, а другой – температура таяния льда -32 градуса. Ну а кульминационной точкой в развитии практической термометрии явилось принятие в 1927 году Международной температурной шкалы МТШ-27. В дальнейшем температурная шкала совершенствовалась и расширялась практически до 0 К.

Температура - параметр, который можно измерить только косвенно, по изменению других физических параметров. Термометрию различают на первичную и вторичную. В первичной термометрии температура явно описывается через другие физические параметры, например для газовых термометров это давление и объём. Примерами вторичных термометров являются термометры сопротивления и термопары В промышленности термометры сопротивления и термопары являются основными средствами контроля температуры, закрывая диапазон измерения от -200 до +2500 °C и более.

# Термометры сопротивления

Основной стандарт в странах таможенного союза, устанавливающий общие технические требования к техническим термометрам сопротивления: ГОСТ 6651-2009. Он практически полностью соответствует МЭК 60751. Ниже приведены некоторые параметры из этого документа

### Таблица 1.

| Тип ТС     | Обозначение | Температурный<br>коэффициент, а | Класс допуска | Сопротивление<br>при 0°C, Ом |
|------------|-------------|---------------------------------|---------------|------------------------------|
| П          | Pt          | 0,00385                         | AA A D C      |                              |
| Платиновый | П           | 0,00391                         | AA, A, B, C   | 10, 50, 100, 500, 1000       |
| Медный     | М           | 0,00428                         | A, B, C       |                              |

### Таблица 2.

|               | 1               | Диапаз         | он измерений (максимальн | ый), °С  |
|---------------|-----------------|----------------|--------------------------|----------|
| Класс допуска | Допуск, °С      | Платино        | Медный ТС                |          |
|               |                 | Проволочный ЧЭ | Плёночный ЧЭ             | -        |
| AA            | ±(0,1+0,0017T)  | -50+250        | 0+150                    |          |
| А             | ± (0,15+0,002T) | -100+450       | -30+300                  | -50+120  |
| В             | ± (0,3+0,005T)  | -196+660       | -50+500                  | -50+200  |
| С             | ± (0,6+0,01T)   | -196+660       | -50+600                  | -180+200 |

В последнее время платиновые термосопротивления активно начали вытеснять мелные и термопары. Связано это с появлением на рынке недорогих платиновых плёночных термочувствительных элементов, которые в отличие от медных являются более стабильными и работают в более широком диапазоне температур. А по сравнению с термопарами - обеспечивают более высокую точность измерения и не требуют использования дорогого термокомпенсационного кабеля. Однако в России медные термометры до сих пор находят широкое применение. Одно из основных преимуществ меди - это очень хорошая линейная зависимость её сопротивления от температуры в диапазоне от -50 до +200 °C и более высокая чем у платины чувствительность. Свыше 200 °С медь начинает очень быстро окисляться на воздухе, поэтому обычно верхний предел измерения для медных термосопротивлений устанавливается до 180 °С. При производстве используется проволока диаметром от 30 до 80 мкм. При дальнейшем уменьшении диаметра стоимость проволоки резко возрастает, а изготовление термосопротивления с заданными параметрами становится проблематичным. Также следует обращать

внимание на максимальный измерительный ток. Например, для термометров сопротивления, изготовленных из проволоки диаметром 30 мкм уже при токе 0,2 мА становится заметным явление саморазогрева от протекающего тока, а значит использование таких термометров с большинством измерительных приборов становится невозможным. Обычно диаметр используемой проволоки определяется исходя из диаметра зонда, в который будет устанавливаться проволочный чувствительный элемент. Например, для зонда диаметром 2 мм используют проволоку диаметром 30 мкм, 4 мм – 40 мкм, 5...6 мм – 50 мкм, 8...10 мм – 80 мкм.

Большое значение имеет схема соединения проводников термосопротивления. Различают три основных схемы: 2-х, 3-х и 4-х проводную. При двухпроводной схеме к сопротивлению ЧЭ добавляется сопротивление внешних проводов, что приводит к появлению дополнительной погрешности измерения. Ясно, что такой способ можно использовать только для ЧЭ с большим сопротивлением. Из наиболее употребимых - это Pt1000. Легко подсчитать, что для обеспечения точности измерения 0,1°C общее сопротивление внешних проводников не должно быть больше

3,8 Ом. В трехпроводной схеме подключения автоматически из полного сопротивления вычитается сопротивление внешних проводов. Но это только в случае, если сопротивление проводников 1 и 2 трехпроводной схемы равны между собой. Тем не менее трехпроводная схема подключения термосопротивлений на сегодняшний момент является самой популярной. Практически все вторичные приборы (измерители, регуляторы) имеют входные цепи, рассчитанные под эту схему. Трёхпроводная схема позволяет увеличить расстояние от датчика до прибора до 50. 100 метров. При этом не обязательно, чтобы сам термометр сопротивления был изготовлен по трехпроводной схеме. Можно использовать и датчики с двумя клеммами, подключив к одной клемме один провод, а ко второй – два. Четырёхпроводная схема используется в основном только для точных измерений и в эталонных приборах. Данная схема позволяет автоматически компенсировать влияние на результат измерения не только сопротивления проводников, но и эдс в местах контактов.

# Советы при выборе и монтаже термометров сопротивления.

Есть банальные истины, которыми нужно руководствоваться при выборе подходящего датчика температуры. Конечно же нужно в первую очередь обратить внимание на диапазон измерения и точность. Во-вторых, нужно решить вопрос с основным конструктивным исполнением: в клеммной головке, или с кабельным выводом. Датчики с кабельным выводом более миниатюрны и менее инерционны. Они уже полностью готовы к подключению ко вторичному прибору. Но вышеперечисленные преимущества одновременно являются и их недостатками. Миниатюрный корпус - следовательно небольшой размер чувствительного элемента и малый измерительный ток. Жестко присоединенный кабель несет за собой худшую, чем для датчиков в клеммной головке степень защиты от воды. Эти датчики заведомо дороже из-за высокой стоимости применяемого высокотемпературного кабеля. Они менее надежны при механических воздействиях опять-таки из-за

наличия кабеля. С термосопротивлением в клеммной головке не обязательно использовать высокотемпературный кабель. Минус этих датчиков в одном — габаритных размерах, что бывает важно в ряде случаев.

При монтаже датчика температуры нужно максимально увеличить его тепловой контакт с контролируемой средой и одновременно уменьшить отток тепла от места подключения. Необходимо помнить, что чувствительный элемент имеет конечную длину, поэтому глубина погружения датчика должна быть как минимум на несколько диаметров зонда больше, чем длина ЧЭ. При монтаже датчиков контроля поверхности очень важно место соединения предварительно смазать каким-либо вязким веществом. Также важно обеспечить тепловой контакт кабеля с контролируемым объектом, чтобы минимизировать отвод тепла от ЧЭ датчика по кабелю. Ещё лучше, если и датчик, и подводящий кабель будут закрыты

хорошим теплоизолятором, например, пенополиуретаном или пенополиэтиленом. Датчики температуры воздуха лучше устанавливать в тех местах помещения, которые наиболее важны для контроля. При плохой конвекции воздуха в помещении градиент температуры может составить до 5 и более градусов. При экспресс контроле температуры поверхности теплоёмкость датчика должна быть минимальной. Дело в том, что самое большое зло при контактном способе измерения температуры поверхности состоит в том, что датчик уменьшает температуру поверхности в месте установки. Процесс восстановления начальной температуры может идти очень долго, что зачастую приводит к неправильным результатам и выводам. Примером может служить ситуация с «занижением» показаний медицинских электронных термометров.

# Термопары

По сравнению с термометрами сопротивления термопары обладают рядом очень больших преимуществ и таких же больших недостатков. По большому счёту эти два класса приборов очень органично дополняют друг друга. И задача киповца – определить, какой датчик температуры ему нужен для той или иной задачи.

Технические требования, классификация, методы испытаний преобразователей тер-

моэлектрических приведены в ГОСТ 6616-94. Номинальные статические характеристики приведены в ГОСТ Р 8.585-2001.

В таблице ниже представлены технические параметры наиболее применяемых в России термопар.

Термопары имеют очень большой диапазон рабочих температур. При этом чем больше максимальная рабочая температура термо-

пары, тем меньше её чувствительность. С этим фактом связан большой ассортимент применяемых термопар. При помощи термопар можно измерять температуру очень маленьких объектов. Для этого достаточно сварить между собой две термоэлектродные проволоки маленького диаметра. Естественно, что такая термопара имеет и очень незначительную инерционность. Термопара из недрагоценных металлов малой длины дешевле термосопротивления. Однако

при увеличении длины стоимость её значительно возрастает. В то же время термопары значительно уступают термосопротивлениям в точности измерения. Связано это с рядом причин. Сигнал с термопары значительно более нелинеен. Для получения абсолютной измеренной температуры необходимо знать

температуру холодного спая термопары. А это означает, что общая погрешность измерения сложится из двух: погрешности измерения разности температур рабочего и холодного спая термопары и погрешности измерения температуры холодного спая. На практике же все еще сложнее. Очень непросто измерить

с хорошей точностью температуру выводов термопары на входе вторичного прибора. На практике эта погрешность составляет около 1 °C. При измерении высоких температур значение данной погрешности несколько нивелируется.

Таблица 3.

| Тип ТП                                     | Обозначе-         |                  | ка цветовая<br>и жил +/- | Диапазон<br>измерения, | Класс допуска, пределы допускаемого<br>отклонения для диапазона измерения.                                                        |                                  | тура, °С и                 |
|--------------------------------------------|-------------------|------------------|--------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|
| 17111111                                   | ние типа          | IEC 584-3        | ANSI MC96-1              | °C                     | °C                                                                                                                                | чувствительность, мкВ/С          |                            |
| Медь-констан-<br>тан ТМКн                  | Т                 | Кор<br>красн/бел | Син<br>син/красн         | -200+350               | 1 - ±0,5 (-40+125), ±0,004T (+125+350)<br>-200+350 2 - ±1,0 (-40+133), ±0,0075T (+133+350)<br>3 - ±0,015T (-20067), ±1,0 (-67+40) |                                  | 15<br>39<br>46             |
| Хромель-ко-<br>пель ТХК                    | L                 | _                | -                        | -200+800               | -200+800 2 - ±2,5 (-40+300), ±0,0075T (+300+800) 3 - ±0,015T (-200100), ±2,5 (-100+100)                                           |                                  | 22<br>62<br>72<br>87       |
| Хромель-алю-<br>мель ТХА                   | К                 | Зел<br>зел/бел   | Жёл<br>жёл/красн         | -200+1300              | 1 - ±1,5 (-40+375), ±0,004T (+375+1000)<br>2 - ±2,5 (-40+333), ±0,0075T (+333+1200)<br>3 - ±0,015T (-200167), ±2,5 (-167+40)      | -200<br>0<br>100<br>500<br>1000  | 15<br>39<br>41<br>42<br>39 |
| Платиноро-<br>дий-платина<br>ТПП13, ТПП 10 | R<br>S            | Жёл<br>жёл/бел   | Зел<br>чёрн/красн        | 0+1600                 | 1 - ±1,0 (0+1100), ±(1+0,003(T-1100)<br>(+1100+1600)<br>2 - ±1,5 (0+600), ±0,0025T (+600+1600)                                    | 0<br>100<br>500<br>1000          | 5<br>7,5<br>11<br>13       |
| Платиноро-<br>дий-платино-<br>родий ТПР    | В                 | -                | Чёрн<br>чёрн/красн       | +600+1700              | 2 - ±0,0025T (+600+1700)<br>3 - ±4,0 (+600+800), ±0,005T (+800+1700)                                                              | 0<br>100<br>500<br>1000<br>1500  | -0,2<br>1<br>5<br>9<br>11  |
| Вольфрамре-<br>ний-вольфрам-<br>рений ТВР  | A-1<br>A-2<br>A-3 | -                | -                        | 0+2500                 | 2 - ±0,005T (+1000+2500)<br>3 - ±0,007T (+1000+2500)<br>индивидуально (0+1000)                                                    | 0<br>500<br>1000<br>1500<br>2000 | 12<br>17<br>15<br>13       |

У российских термопар маркировка наносится на положительный термоэлектрод

# Советы по выбору и применению термопар.

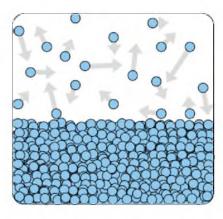
Для использования в диапазоне до +200 °C лучше применять платиновые или медные термосопротивления. В случае контроля температуры очень небольшого объекта малой теплоёмкости можно использовать термопару медь-константан, которая замечательна тем, что очень легко сваривается над поверхностью раствора медного купороса, имеет самую высокую чувствительность и очень низкую стоимость. Для диапазона до +800 °С в России используется термопара хромель-копель XK(L). Данные термопары имеют очень высокую чувствительность в широком диапазоне начиная от -200 °C. В других странах данный тип термопары не применяется. Самыми популярными в промышленности являются термопары типа ХА(К) хромель-алюмелевые. Теоретический диапазон их использования составляет от -200 до +1300 °C. Термопары типа К замечательны хорошей линейностью характеристики от 0 до 1000 °C. В реальности наиболее высокотемпературные термопары работают до 1100 °C. Так

как при высокой температуре от +800 °C термоэлектродные проволоки начинают активно окисляться, то единственным путём увеличить срок службы термопары и температуру эксплуатации является увеличение диаметра термоэлектродных проволок до 2...3 мм. При температуре выше 800 °C нержавеющую сталь кожуха меняют на специальную высокотемпературную сталь или керамику. Для измерения температуры вплоть до +1700 °C применяют термопары, изготовленные из драгоценных металлов платиновой группы. Они отличаются высокой стабильностью параметров, но имеют крайне низкую чувствительность при низких температурах и очень высокую стоимость. Наиболее высокотемпературные термопары вольфрам-рениевые. Но они не могут работать в окислительной атмосфере при температуре уже выше 500°C. Оболочку этих датчиков необходимо наполнять инертным газом. Так как герметичный корпус для высоких температур изготовить проблематично, то для продолжи-

тельной работы по внутренней полости этих термопар постоянно пропускают инертный газ. Для контроля температуры поверхности или воздуха лучше применять гибкую термопару без защитного чехла. Для контроля поверхности нужно обеспечить хороший тепловой контакт с поверхностью не только рабочего конца термопары, но и термоэлектродов на расстоянии не менее 50 мм, чтобы уменьшить теплоотвод от места контроля. При использовании термопары при высокой температуре в окислительной или агрессивной атмосфере может наблюдаться деградация параметров, связанная с окислением и изменением химического состава термоэлектродов. Необходимо периодически контролировать термопары хотя бы по её полному сопротивлению постоянному току. Для использования в экстремальных условиях в течение непродолжительного времени существуют ТП разового применения и ТП кратковременного примене-

# 1.2 Измерение влажности

Здесь и далее мы будем говорить о влажности воздуха и газов. В отличие от температуры, с определением и физическим пониманием влажности проблем нет. Это количество воды, содержащееся в единице объема воздуха. Но мы столкнулись в своей работе с тем, что люди, занимающиеся профессионально измерениями не чувствуют этот физический параметр


и соответственно не могут провести элементарные расчеты и объяснить многие явления, связанные с влажностью. Связано это во многом с тем, что в отличие от температуры мы не ощущаем влажность так явно. Представьте, что вы вышли зимним утром из дома. Какая температура на улице, вы сможете сказать с точностью 3...5 °C, а вот вопрос, какая сейчас относи-

тельная влажность, поставит вас в тупик. В то же время влажность воздуха является очень важным параметром, непосредственно влияющим на самочувствие и работоспособность человека. Очень важно знать и поддерживать определенную влажность во многих отраслях промышленности и сельском хозяйстве.

### Что такое влажность воздуха

Существуют несколько единиц измерения относительной влажности воздуха.

- 1. Абсолютная влажность это количество воды в единице объёма воздуха, А (г/м3).
- 2. Для определения второй единицы измерения нужно внимательно посмотреть на рисунок, отображающий движение молекул воды в закрытом сосуде, залитом до определенного уровня водой. Через некоторое время в этом сосуде два процесса: испарения и конденсации молекул воды выровняются, и мы получим насыщенный водяной пар, который создает давление на стенки сосуда равное давлению насыщенного водяного пара, Ps(Pa). В воздухе всегда присутствуют молекулы воды, но их концентрация ниже, чем над водной поверхностью. Они так же, как и другие молекулы воздуха создают давление. Это давление, создаваемое именно молекулами воды, называется парциальным давлением водяного пара, Р(Па). Отношение парциального давления водяного пара к насыщенному давлению



водяного пара, выраженное в процентах называется относительной влажностью воздуха:  $\Psi$ =P/Ps\*100%. Из определения вытекает, что над поверхностью воды относительная влажность воздуха равна 100 %. И обратно, при 100 %-ой влажности воздуха наблюдается конденсация влаги. Давление насыщенного водяного

пара растет при увеличении температуры. Если в изолированном помещении со 100 %-ой влажностью повысить температуру, то относительная влажность резко снизится.

3. Из второй единицы измерения следует третья. Если в замкнутом объеме с определенной влажностью уменьшать температуру, то будет увеличиваться относительная влажность воздуха. При определенной температуре относительная влажность станет равной 100 %. Эта температура называется температурой точки росы. Для отрицательных температур существует своя точка росы - точка инея. Само определение подсказывает один из способов определения влажности воздуха в некотором объеме. Нужно медленно охлаждать какой-то предмет, контролируя его температуру. Температура, при которой на предмете возникнет водяная пленка сконденсировавшихся молекул воды, будет равна температуре точки росы в данном объеме.

Выражения для расчета давления насыщенного водяного пара над поверхностью воды Psw и льда Psi в зависимости от температуры:

ln psw=-6094,4692T-1+21,1249952-0,027245552T+0,000016853396T2+2,4575506 ln T, для T=0...100 °C ln psi=-5504,4088T-1-3,5704628-0,017337458T+0,0000065204209T2+6,1295027ln T, для T=-100...0 °C

Таблица 1. Значения давления насыщенного пара над поверхностью воды (Psw) и льда (Psi):

| T, °C | PSW, ΠΑ | PSI, ΠA | T, °C | PSW, ΠΑ | PSI, ΠA | T, °C | PSW, ΠA | psi, Па |
|-------|---------|---------|-------|---------|---------|-------|---------|---------|
| -50   | 6,453   | 3,924   | -33   | 38,38   | 27,65   | -16   | 176,37  | 150,58  |
| -49   | 7,225   | 4,438   | -32   | 42,26   | 30,76   | -15   | 191,59  | 165,22  |
| -48   | 8,082   | 5,013   | -31   | 46,50   | 34,18   | -14   | 207,98  | 181,14  |
| -47   | 9,030   | 5,657   | -30   | 51,11   | 37,94   | -13   | 225,61  | 198,45  |
| -46   | 10,08   | 6,38    | -29   | 56,13   | 42,09   | -12   | 244,56  | 217,27  |
| -45   | 11,24   | 7,18    | -28   | 61,59   | 46,65   | -11   | 264,93  | 237,71  |
| -44   | 12,52   | 8,08    | -27   | 67,53   | 51,66   | -10   | 286,79  | 259,89  |
| -43   | 13,93   | 9,08    | -26   | 73,97   | 57,16   | -9    | 310,25  | 283,94  |
| -42   | 15,48   | 10,19   | -25   | 80,97   | 63,20   | -8    | 335,41  | 310,02  |
| -41   | 17,19   | 11,43   | -24   | 88,56   | 69,81   | -7    | 362,37  | 338,26  |
| -40   | 19,07   | 12,81   | -23   | 96,78   | 77,06   | -6    | 391,25  | 368,84  |
| -39   | 21,13   | 14,34   | -22   | 105,69  | 85,00   | -5    | 422,15  | 401,92  |

| -38 | 23,40 | 16,03 | -21 | 115,32 | 93,67  | -4 | 455,21 | 437,68 |
|-----|-------|-------|-----|--------|--------|----|--------|--------|
| -37 | 25,88 | 17,91 | -20 | 125,74 | 103,16 | -3 | 490,55 | 476,32 |
| -36 | 28,60 | 19,99 | -19 | 136,99 | 113,52 | -2 | 528,31 | 518,05 |
| -35 | 31,57 | 22,30 | -18 | 149,14 | 124,82 | -1 | 568,62 | 563,09 |
| -34 | 34,83 | 24,84 | -17 | 162,24 | 137,15 | 0  | 611,65 | 611,66 |

Таблица 2. Значения давления насыщенного пара над плоской поверхностью воды (Psw):

| T, °C | PS <b>W</b> , ΠΑ | T, °C | PSW, ΠA | T, °C | PS <b>W</b> , ΠΑ | T, °C | PS <b>W</b> , ΠΑ |
|-------|------------------|-------|---------|-------|------------------|-------|------------------|
| 0     | 611,65           | 26    | 3364,5  | 52    | 13629,5          | 78    | 43684,4          |
| 1     | 657,5            | 27    | 3568,7  | 53    | 14310,3          | 79    | 45507,1          |
| 2     | 706,4            | 28    | 3783,7  | 54    | 15020,0          | 80    | 47393,4          |
| 3     | 758,5            | 29    | 4009,8  | 55    | 15759,6          | 81    | 49344,8          |
| 4     | 814,0            | 30    | 4247,6  | 56    | 16530,0          | 82    | 51363,3          |
| 5     | 873,1            | 31    | 4497,5  | 57    | 17332,4          | 83    | 53450,5          |
| 6     | 935,9            | 32    | 4760,1  | 58    | 18167,8          | 84    | 55608,3          |
| 7     | 1002,6           | 33    | 5036,0  | 59    | 19037,3          | 85    | 57838,6          |
| 8     | 1073,5           | 34    | 5325,6  | 60    | 19942,0          | 86    | 60143,3          |
| 9     | 1148,8           | 35    | 5629,5  | 61    | 20883,1          | 87    | 62524,2          |
| 10    | 1228,7           | 36    | 5948,3  | 62    | 21861,6          | 88    | 64983,4          |
| 11    | 1313,5           | 37    | 6282,6  | 63    | 22878,9          | 89    | 67522,9          |
| 12    | 1403,4           | 38    | 6633,1  | 64    | 23936,1          | 90    | 70144,7          |
| 13    | 1498,7           | 39    | 7000,4  | 65    | 25034,6          | 91    | 72850,8          |
| 14    | 1599,6           | 40    | 7385,1  | 66    | 26175,4          | 92    | 75643,4          |
| 15    | 1706,4           | 41    | 7787,9  | 67    | 27360,1          | 93    | 78524,6          |
| 16    | 1819,4           | 42    | 8209,5  | 68    | 28589,9          | 94    | 81496,5          |
| 17    | 1939,0           | 43    | 8650,7  | 69    | 29866,2          | 95    | 84561,4          |
| 18    | 2065,4           | 44    | 9112,1  | 70    | 31190,3          | 96    | 87721,5          |
| 19    | 2198,9           | 45    | 9594,6  | 71    | 32563,8          | 97    | 90979,0          |
| 20    | 2340,0           | 46    | 10098,9 | 72    | 33988,0          | 98    | 94336,4          |
| 21    | 2488,9           | 47    | 10625,8 | 73    | 35464,5          | 99    | 97795,8          |
| 22    | 2646,0           | 48    | 11176,2 | 74    | 36994,7          | 100   | 101359,8         |
| 23    | 2811,7           | 49    | 11750,9 | 75    | 38580,2          |       |                  |
| 24    | 2986,4           | 50    | 12350,7 | 76    | 40222,5          |       |                  |
| 25    | 3170,6           | 51    | 12976,6 | 77    | 41923,4          |       |                  |

Таблица 3. Относительная влажность при отрицательной температуре Ѱі

Ψw=100p/psw, Ψi=100p/psi, Ψi=Ψw(psw/psi), поправочный коэффициент к=psw/psi. Значения поправочного коэффициента «к» при различной температуре:

| T, °C | -0     | -10   | -20   | -30   | -40   |
|-------|--------|-------|-------|-------|-------|
| -0    | 1      | 1,104 | 1,219 | 1,347 | 1,489 |
| -1    | 1,010  | 1,115 | 1,231 | 1,361 | 1,504 |
| -2    | 1,020  | 1,126 | 1,243 | 1,374 | 1,519 |
| -3    | -1,030 | 1,137 | 1,256 | 1,388 | 1,534 |
| -4    | 1,040  | 1,148 | 1,269 | 1,402 | 1,549 |
| -5    | 1,050  | 1,160 | 1,281 | 1,416 | 1,565 |
| -6    | 1,061  | 1,171 | 1,294 | 1,430 | 1,580 |
| -7    | 1,071  | 1,183 | 1,307 | 1,445 | 1,596 |
| -8    | 1,082  | 1,195 | 1,320 | 1,459 | 1,612 |
| -9    | 1,093  | 1,207 | 1,334 | 1,474 | 1,628 |
|       |        |       |       |       |       |

Таблица 4. Значения абсолютной влажности газа с относительной влажностью по воде 100 % при различной температуре:

| T, °C | А, Г/М |
|-------|--------|-------|--------|-------|--------|-------|--------|
| -50   | 0,063  | -10   | 2,361  | 30    | 30,36  | 70    | 196,94 |
| -49   | 0,070  | -9    | 2,545  | 31    | 32,04  | 71    | 205,02 |
| -48   | 0,078  | -8    | 2,741  | 32    | 33,80  | 72    | 213,37 |
| -47   | 0,087  | -7    | 2,950  | 33    | 35,64  | 73    | 221,99 |
| -46   | 0,096  | -6    | 3,173  | 34    | 37,57  | 74    | 230,90 |
| -45   | 0,107  | -5    | 3,411  | 35    | 39,58  | 75    | 240,11 |
| -44   | 0,118  | -4    | 3,665  | 36    | 41,69  | 76    | 249,61 |
| -43   | 0,131  | -3    | 3,934  | 37    | 43,89  | 77    | 259,42 |
| -42   | 0,145  | -2    | 4,222  | 38    | 46,19  | 78    | 269,55 |
| -41   | 0,160  | -1    | 4,527  | 39    | 48,59  | 79    | 280,00 |
| -40   | 0,177  | 0     | 4,852  | 40    | 51,10  | 80    | 290,78 |
| -39   | 0,196  | 1     | 5,197  | 41    | 53,71  | 81    | 301,90 |
| -38   | 0,216  | 2     | 5,563  | 42    | 56,44  | 82    | 313,36 |
| -37   | 0,237  | 3     | 5,952  | 43    | 59,29  | 83    | 325,18 |
| -36   | 0,261  | 4     | 6,364  | 44    | 62,25  | 84    | 337,36 |
| -35   | 0,287  | 5     | 6,801  | 45    | 65,34  | 85    | 349,91 |
| -34   | 0,316  | 6     | 7,264  | 46    | 68,56  | 86    | 362,84 |
| -33   | 0,346  | 7     | 7,754  | 47    | 71,91  | 87    | 376,16 |
| -32   | 0,380  | 8     | 8,273  | 48    | 75,40  | 88    | 389,87 |
| -31   | 0,416  | 9     | 8,822  | 49    | 79,03  | 89    | 403,99 |
| -30   | 0,455  | 10    | 9,403  | 50    | 82,81  | 90    | 418,52 |
| -29   | 0,498  | 11    | 10,02  | 51    | 86,74  | 91    | 433,47 |
| -28   | 0,544  | 12    | 10,66  | 52    | 90,82  | 92    | 448,86 |
| -27   | 0,594  | 13    | 11,35  | 53    | 95,07  | 93    | 464,68 |
| -26   | 0,649  | 14    | 12,07  | 54    | 99,48  | 94    | 480,95 |
| -25   | 0,707  | 15    | 12,83  | 55    | 104,06 | 95    | 497,68 |
| -24   | 0,770  | 16    | 13,63  | 56    | 108,81 | 96    | 514,88 |
| -23   | 0,838  | 17    | 14,48  | 57    | 113,75 | 97    | 532,56 |
| -22   | 0,912  | 18    | 15,37  | 58    | 118,87 | 98    | 550,73 |
| -21   | 0,991  | 19    | 16,31  | 59    | 124,19 | 99    | 569,39 |
| -20   | 1,076  | 20    | 17,30  | 60    | 129,70 | 100   | 588,56 |
| -19   | 1,168  | 21    | 18,33  | 61    | 135,41 |       |        |
| -18   | 1,266  | 22    | 19,42  | 62    | 141,33 |       |        |
| -17   | 1,372  | 23    | 20,57  | 63    | 147,47 |       |        |
| -16   | 1,486  | 24    | 21,78  | 64    | 153,83 |       |        |
| -15   | 1,608  | 25    | 23,04  | 65    | 160,41 |       |        |
| -14   | 1,739  | 26    | 24,37  | 66    | 167,23 |       |        |
| -13   | 1,879  | 27    | 25,76  | 67    | 174,28 |       |        |
| -12   | 2,029  | 28    | 27,22  | 68    | 181,58 |       |        |
| -11   | 2,190  | 29    | 28,75  | 69    | 189,13 |       |        |

### Примеры расчета

### Пример 1.

Задача. Относительная влажность воздуха при температуре 20 °C составляет 55 %. Определить точку росы воздуха.

Решение. Из Таблицы 2 давление насыщенного водяного пара при температуре 20 °C равно 2340 Па. Определяем парциальное давление водяного пара в воздухе: p=ps( $\Psi/100$ )=2340x55/100=1287 Па. Из Таблицы 2 находим температуру: 10,5 °C.

### Пример 2.

**Задача.** Снаружи: T=-10 °C, Ψ=100 %, в помещении: T=20 °C. Чему равна отн. влажность в помещении?

Решение. Из Таблицы 2 находим значение давления насыщенного водяного пара Psн при температуре -10 °C. Это давление равно парциальному давлению водяного пара в помещении. Из Таблицы 2 находим, чему равно давление насыщенного водяного пара Psп при 20 °С в помещении. Чп=Рsн/Psп\*100%. Чп=286/2340\*100 %=12,2 %.

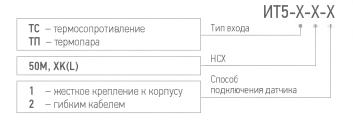
### Сенсоры для измерения влажности воздуха

Для определения влажности воздуха существуют как прямые, так и косвенные методы. Из прямых можно привести метод определения температуры точки росы по конденсации на зеркале. Это очень точный метод, позволяюший измерять малые значения влажности Однако сами приборы -достаточно дорогие. Метод требует времени и неприспособлен для контроля быстрых процессов. В основном его используют в лабораториях для определения влажности сухих газов. Существует также спектрометрический метод прямого подсчета молекул воды в воздухе. Но он также не подходит для промышленного применения. Наиболее популярным методом измерения является психрометрический, по разнице показаний сухого и влажного термометров. Но этот метод требует четко задаваемой постоянной скорости обдува влажного термометра. Большинство же психрометров просто крепятся на стене и верить им конечно же нельзя. И из-занеконтролируемой скорости обдува и из-за недостоверного измерения температуры воздуха. Беда в том, что люди привыкли к этим приборам и ссылаются на их показания, как единственно верные.

Для производства электронных датчиков и измерителей относительной влажности чаще всего используют емкостные полимерные

чувствительные элементы. Данные сенсоры представляют собой подложку с нанесенным нижним металлическим слоем, слой полимера. легко адсорбирующего влагу, верхний пористый слой металлизации. При изменении влажности меняется как толицина полимера. так и его диэлектрические параметры, что приводит к изменению емкости сенсора. В последнее время внимание к этим сенсорам сильно выросло, так как появилась возможность создания датчиков с цифровым выходом с уже откалиброванным выходным сигналом.

### Особенности применения измерителей влажности воздуха с емкостным чувствительным элементом


К сожалению, емкостные чувствительные элементы реагируют не только на влажность, но и на большинство неинертных газов, что приводит к дополнительной погрешности, а часто и к полной деградации сенсора. При длительном нахождении сенсора при высокой влажности его необходимо просушить при повышенной температуре по методике, предоставляемой изготовителем. Полимер не может работать при высокой температуре, ограничивая диапазон использования измерителя. Нельзя допускать конденсации влаги на чувствительном элементе, так как это приведет к

коррозии тонкопленочной структуры сенсора. Сенсор необходимо защищать от воздействия солнечных лучей, касания руками, различных загрязнений. Именно сенсор влажности определяет технические параметры и срок службы измерителя влажности. Поэтому так важно, чтобы сенсоры были взаимозаменяемы. Именно поэтому межповерочный интервал для измерителей влажности равен всего одному году. Лучшее значение абсолютной погрешности для измерителя влажности промышленного применения на сегодня, это ±2,0 %. Необходимо помнить, что относительная

влажность воздуха по определению очень сильно зависит от температуры. Колебания температуры воздуха по объему помещения в ±1 °C могут приводить к колебаниям относительной влажности в ±5 % и более. Если зимой ваш электронный гигрометр показывает отн. влажность в 7 %, а психрометр -30 %, то это отнюдь не означает, что гигрометр сломался. Так и есть. Просто снимите со стены психрометр и положите подальше в шкаф.

# 2.1.1 Измеритель температуры ИТ5-Т «Термит»

Измеритель температуры цифровой переносной ИТ5-Т «Термит» применяется в пищевой промышленности, сельском и коммунальном хозяйствах, машиностроении, на железнодорожном транспорте и других отраслях промышленности.



- Задание времени отключения питания 5 с. ... 60 мин.;
- Возможность юстировки пользователем;
- Индикация разряда батарей, выхода за пределы диапазона измерения, неисправности термопреобразователя.

### Описание прибора

Измеритель температуры ИТ5–Т «Термит» предназначен для измерения температуры твердых, газообразных, жидких и сыпучих сред, температуры поверхности твердых тел и т. д.

Датчик присоединяется к цифровому термометру гибким кабелем или жестким креплением.

Термопреобразователи для ИТ5-Т по конструктивному исполнению делятся на три вида:

- 1. ТКЖ1 с кабельным выводом, зонд погружной;
- 2. ТВЖ1 встроенный в корпус прибора, зонд погружной;
- 3. ТКП1 с кабельным выводом, поверхностный.

# DISTRICTURE TO DESCRIPTION OF THE PROPERTY OF

# Конструктивные исполнения и технические характеристики

| Тип входа | Диапазон измерения, С | Погрешность, % | Разрешающая способность |
|-----------|-----------------------|----------------|-------------------------|
| 50M       | -30+160               | 0,5            | 0,2                     |
| XK(L)     | -40+600               | 0,5            | 1,0                     |

- Температура эксплуатации: +5...+55 °C
- Габаритные размеры 140\*73\*27 мм

# Термопреобразователи для ИТ5-Т

|      | Конструктивное исполнение | нсх          | Диапазон<br>измерения, С | Диаметр<br>зонда, мм | Длина<br>зонда, мм |
|------|---------------------------|--------------|--------------------------|----------------------|--------------------|
| ТКЖ1 |                           | 50M<br>XK(L) | -30+160<br>-40+600       | 4,0                  | 120; 200; 300; 400 |
| ТВЖ1 |                           | 50M          | -30+160                  | 4,0                  | 120; 200; 300; 400 |
| ТКП1 | <del>}</del>              | XK(L)        | -40+600                  | 3,0                  | 200                |

- Класс точности термопреобразователей: В - для 50М; 2 — для ХК(L).
- Стандартная длина кабеля для выносных датчиков 1,0 м.
- Пример обозначения датчика при заказе: ТКЖ1.50М.4х120.1,0

# 2.1.2 Измеритель температуры поверхности цифровой переносной ИТ5-п/п-ЖД

(рельсовый термометр)

Предназначен для измерения температуры поверхности стальных массивных изделий (толщиной не менее 6,0 мм и минимальными размерами 30х30 мм2), в том числе железнодорожных рельсов, букс вагонов, металлических емкостей, труб большого диаметра и т.д.

- Цифровой светодиодный индикатор позволяет проводить измерения температуры в темное время суток;
- Расширенный диапазон температуры эксплуатации от -40 до +50°C;
- Встроенный датчик температуры поверхности с магнитным держателем;
- Индикация момента установления температуры;
- Индикация разряда аккумулятора, неисправности датчика;
- Прочный герметичный корпус.





Внесен в Государственный реестр средств измерений Российской Федерации под № 44386—10 от 07.07.2010 г.

# Технические характеристики


| Диапазон измерения (эксплуатации)                | -40+80 °C (-20+50 °C)                                     |
|--------------------------------------------------|-----------------------------------------------------------|
| Погрешность                                      | ±1,0 °C                                                   |
| Дискретность                                     | 0,1 °C                                                    |
| Инерционность                                    | 90 сек                                                    |
| Продолжительность непрерывной работы до разрядки | 6 ч (1000 циклов измерений)                               |
| Тип термочувствительного элемента                | Pt1000                                                    |
| Габаритные размеры                               | 92 х 58 х 33 мм                                           |
| Macca                                            | не более 0,18 кг                                          |
| Дополнительно                                    | Комплектуется сумкой для переноски и зарядным устройством |

Для уменьшения времени измерения место касания датчика температуры рекомендуется предварительно смочить или нанести на него немного масла.

# 2.1.3 Измеритель температуры ИТ-7

# (термометр-щуп цифровой переносной)

Предназначен для измерения температуры газообразных сред, жидких и сыпучих сред в зависимости от конструктивного исполнения. Может использоваться для контроля температуры асфальто-битумной смеси при строительстве дорог, угля, замороженного мяса в холодильных камерах, теплоносителя в системе ЖКХ, температуры воздуха и неагрессивных газов, температуры в термокамерах, измерительных шкафах, холодильниках и т.д.



- Отсутствие кабеля
- Прочный корпус
- Яркий светодиодный индикатор
- Высокая точность
- Расширенный диапазон температуры эксплуатации
- Простая юстировка
- Автоматическое отключение питания





### Описание прибора

мопреобразователя. Зонд крепится к изготавливается с длиной зонда до 1000 ручке при помощи массивного фланца с мм, а по специальному заказу и до 2000 углублениями для фиксации от кручения. мм. Прибор неприхотлив и очень удобен. Как результат- высокая механическая Помещаем зонд в контролируемую среду, прочность прибора в целом и места закре- через некоторое время, необходимое для

Весь прибор размещается в ручке тер- пления зонда, в частности. Прибор установления показаний, нажимаем на кнопку, находящуюся на торце ручки и видим результат измерения на индикаторе. Даже в полной темноте работать с прибором легко и удобно.

|                                                  | ит7-ж                                                         | ИТ7-В              |  |
|--------------------------------------------------|---------------------------------------------------------------|--------------------|--|
| Диапазон измерения                               | -50+200 °C                                                    | -40+100 °C         |  |
| Погрешность                                      | ±(0,5 + 0,0025t)°C,                                           | но не более ±0,9°C |  |
| Разрешающая способность                          | 0,                                                            | 1°C                |  |
| Напряжение питания                               | 1,5 B                                                         |                    |  |
| Тип элемента питания                             | LR1                                                           |                    |  |
| Тип термочувствительного элемента                | Pt1000                                                        |                    |  |
| Продолжительность непрерывной работы до разрядки | 45                                                            | ō 4                |  |
| Температура эксплуатации                         | -40+50 °C (ограничивается лиапазоном эксплуатации эл. питания |                    |  |
| Габаритные размеры                               | Корпус: длина 110 мм, диаметр 31 мм                           |                    |  |
| Macca                                            | не более 0,18 кг                                              |                    |  |

# 2.1.4 Измеритель температуры переносной IT-8

(повышенной точности)

Приборы применяются в пищевой промышленности, сельском и коммунальном хозяйствах, машиностроении, электронной и приборостроительной промышленности, нефтегазовой отрасли и других отраслях промышленности, при научных исследованиях.



- Широкий диапазон температуры эксплуатации от -40 °C
- Два канала измерения
- Высокая точность
- Низкая дополнительная температурная погрешность
- Диапазон измерения от -200 до +1700 °C
- Задание порога звуковой и световой сигнализации
- Запоминание макс. и мин. значений

- Подключение датчиков через соедини-
- Яркий большой светодиодный индикатор
- Возможность пользовательской юстировки с датчиком без нарушения заводской настройки
- Наличие широкого ассортимента датчиков, соединительных кабелей
- Прочный, герметичный, с прорезиненными вкладышами корпус



Внесен в Государственный реестр средств измерений Российской Федерации под № 56749-14 от 06.03.2014 г.







# Описание прибора

Серия измерителей температуры IT-8 включает в себя восемь приборов с различной комбинацией типов входов, типов конструктивного исполнения и расположения соединителей. Вы всегда сможете найти прибор, оптимально подходящий под ваши задачи. Учитывая, что измерители могут эксплуатироваться в диапазоне температуры от - 40 (50)°C до + 55°C, сведена к минимуму дополнительная температурная погрешность.

Благодаря повышенной точности измерителей, погрешность измерения температуры определяется в основном подключаемым датчиком. Таким образом, измерители могут работать с несколькими датчиками. При необходимости можно провести юстировку измерителя с конкретным датчиком в необходимом диапазоне измеряемых температур. При этом заводские настройки измерителя остаются неизменными.

С измерителями предлагается широкий ассортимент датчиков, позволяющих проводить контроль различных объектов.

С измерителями предлагается набор соединительных и удлинительных кабелей, позволяющих подключать к измерителю стационарно установленные датчики, а также увеличивать длину кабеля датчика.

# Типы соединителей

R – круглый герметичный соеденитель, 4-х контактный, золоченные контакты, степень защиты ІР65, применяется для типов входа: Pt1000, TS (50M, 100Π, Pt100).

L2 – плоский, двухконтактный соединитель L3 – плоский, трехконтактный соединитель для термопар типа мини: зеленый, желтый – для типа входа K, оранжевый – для типа входа типов входов: Pt1000, TS (50M, 100П, Pt100). SR (TПП(S), TПП(R)).

для термосопротивлений, белого цвета, для

# Технические характеристики

Таблица 1. Условное обозначение прибора, соответствующие ему типы входа, диапазоны измерений температуры, пределы допускаемой абсолютной основной погрешности

| Nº | Условное<br>обозначение | Канал    | Тип входа                               | Диапазон<br>измерения, °С           | Пределы допускаемой<br>абсолютной основной<br>погрешности, °C | Тип<br>соединителя | Конструктивное<br>Исполнение |
|----|-------------------------|----------|-----------------------------------------|-------------------------------------|---------------------------------------------------------------|--------------------|------------------------------|
| 1  | IT-8-Pt/Tc              | 1        | Pt1000                                  | -200+800                            | ±(0,2+0,001T*)                                                | R или L3           | G1 или G2                    |
| '  | 11-0-17/10              | 2        | встроенный                              | -40+55                              | ±1,0                                                          | -                  | OT WIN OZ                    |
| 2  | IT-8-K/Tc               | 1        | К                                       | -50+1200                            | ±(0,5+0,0005T*)                                               | L2                 | G3                           |
| _  | 11-0-R/1C               | 2        | встроенный                              | -40+55                              | ±1,0                                                          | -                  | 03                           |
| 3  | IT-8-TS/Tc              | 1        | программируемый<br>50М<br>100П<br>Pt100 | -100 +200<br>-200 +800<br>-200 +800 | ±(0,2+0,001T*)                                                | R или L3           | G1 или G2                    |
|    |                         | 2        | встроенный                              | -40+55                              | ±1,0                                                          | -                  |                              |
| 4  | IT-8-TS/SR              | 1        | программируемый<br>50М<br>100П<br>Pt100 | -100 +200<br>-200 +800<br>-200 +800 | ±(0,2+0,001T*)                                                | R                  | G5                           |
|    |                         | 2        | S, R                                    | -50+1700                            | ±(0,5+0,0005T*)                                               | L2                 |                              |
| 5  | IT-8-TS/K               | 1        | программируемый<br>50М<br>100П<br>Pt100 | -100 +200<br>-200 +800<br>-200 +800 | ±(0,2+0,001T*)                                                | R                  | G5                           |
|    |                         | 2        | К                                       | -50+1200                            | ±(0,5+0,0005T*)                                               | L2                 |                              |
| 6  | IT-8-Pt/Pt              | 1        | Pt1000                                  | -200 .+800                          | ±(0,2+0,001T*)                                                | L3                 | G6                           |
| 0  | 11-0-21/21              | 2        | Pt1000                                  | -200 +800                           | ±(0,2+0,001T*)                                                | R                  | 00                           |
| 7  | IT-8-SR/SR              | 1        | программируемый<br>S, R                 | -50+1700                            | ±(0,5+0,0005T*)                                               | L2                 | G4                           |
| 1  | / II-8-5K/5K            | 2        | программируемый<br>S, R                 | -50+1700                            | ±(0,5+0,0005T*)                                               | L2                 | 04                           |
| 8  | IT 0 K/K                | 1        | К                                       | -50+1200                            | ±(0,2+0,0005T*)                                               | L2                 | G4                           |
| В  | IT-8-K/K                | 11-8-K/K | 2 K -50+1200 ±(0,2-                     | ±(0,2+0,0005T*)                     | L2                                                            | 04                 |                              |

Питание – четыре элемента типа ААА напряжением 1,5В

Дополнительная температурная погрешность прибора, вызванная изменением температуры окружающей среды в рабочем диапазоне от номинального значения плюс 20 °C – не более ±(0,1+0,0006T) °C на каждые 10 °C изменения температуры окружающей среды.

# Разрешающая способность прибора:

а) для канала с типом входа – Pt, TS:

- в диапазоне от минус 200 до минус 100°C 1,0°C;
- в диапазоне от минус 99,9 до плюс 800°C 0,1°C;

б) для канала с типом входа – K, SR:

- в диапазоне от минус 50,0 до плюс 999,9°C 0,1°C;
- в диапазоне от плюс 1000 до плюс 1700°C 1,0°C.

Время непрерывной работы до смены элемента питания ÷200ч.

# Сервисные функции

- Запоминание максимального, минимального значений:
- Звуковая, световая сигнализация о выходе за заданный порог:
- Возможность корректировки сдвига и наклона характеристики:
- Автоматическое отключение питания через 1...60 мин.;
- Диагностика состояния элементов питания:
- Автоматический переход в экономичный режим.

Схема подключения термопреобразователей сопротивления с НСХ: Pt1000 – двухпроводная: Pt100, 50M, 100П - трехпроводная.

Условное обозначение термопреобразователей сопротивления для IT-8:



Таблица 2. Термопреобразователи сопротивления для IT-8 с типом входа Pt, TS

Диапазон рабочей температуры -50... +180 °C



Внесены в Государственный реестр средств измерений Российской Федерации по № 51307 от 21.09.2012 г

| Рисунок                                                      | Обозначение | Спец.<br>обозначение | Диаметр<br>зонда, мм, d  | Длина зонда,<br>мм, l      | Длина<br>кабеля,<br>м, L | нсх                       | Время<br>реакции,<br>с |                       |     |
|--------------------------------------------------------------|-------------|----------------------|--------------------------|----------------------------|--------------------------|---------------------------|------------------------|-----------------------|-----|
|                                                              | 1444 88     | DTV I/A II           | 2,0                      | 100                        | -                        | 50M Pt100 Pt1000          | 3,0                    |                       |     |
| встроенный погружной                                         | К1И-ВП      | RT.X-K1.d l          | 3,0                      | 120,0:200,0: 300,0         |                          |                           | 5,0                    |                       |     |
| встроенный воздушный                                         | К1И-ВВ      | RT.X-K1A.d.l         | 3,0                      | 50,0; 120,0; 200,0         | -                        | 50M Pt100 Pt1000          | 60,0                   |                       |     |
| 1 2                                                          |             |                      | 2,0                      | 100,0                      |                          | 50M Pt100 Pt1000          | 3,0                    |                       |     |
| с набелем погружной                                          | К1И-КП      | 1/1/4 1/17           | DTV MAD III              | <b>К1И-КП</b> RTX-K1P.d.LL | 4,0                      | 120,0; 200,0: 300,0       | 1,0; 2,0;              | 50M Pt100 Pt1000 100Π | 7,0 |
| 110 L<br>с набелем погружной усиленный                       |             | KI.A-KIP.Q.L.L       | 5,0                      | 500,0; 800,0               | 4,0                      | 50M Pt100 Pt1000 100П     | 9,0                    |                       |     |
| 1                                                            |             |                      | 2,0                      | 100,0                      |                          | 50M Pt100 Pt1000          | 3,0                    |                       |     |
| с кабелем погружной с герметичным разъемом                   | 1/414 1/1/  | RT.X-                | 4,0                      | 120,0; 200,0; 300,0        | 1.0                      | 50M Pt100 Pt1000 100Π     | 7,0                    |                       |     |
| і НП І с набелем погружсной с герметичным разъемом усиленный | К1И-КК      | K1PO.d.l.L           | 5,0                      | 500,0; 800,0               | 1,0                      | 50M Pt100 Pt1000 100П     | 9,0                    |                       |     |
| *                                                            | KO 1/15     | RT.X-K2.X.L          | 4,0                      | /0.0.00.0.100.0            | 1,0 ;2,0;                | E0NA DIA 00 DIA 000 4 005 | 7,0                    |                       |     |
| корпус в виде гильзы                                         | К2-КП       |                      | 60,0; 80,0; 100,0<br>5,0 | 4,0                        | 50M Pt100 Pt1000 100Π    | 9,0                       |                        |                       |     |

Класс допуска для 50М - В; Pt100, Pt1000, 100П - A,B

Условное обозначение термопреобразователей ХА(К) ядля IT-8:

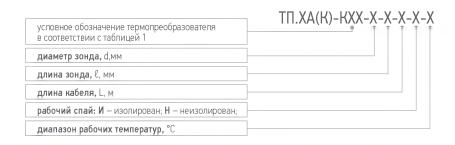



Таблица 3. Преобразователи термоэлектрические для IT-8 с типом входа К

| Рисунон                                          | Обозначе-<br>ние | Спец.<br>-<br>чение | Диаметр<br>зонда,<br>мм, d | Длина зонда,<br>мм, l | Длина<br>кабеля,<br>м, L | Раб.<br>спай<br>И-изол<br>Н-неиз | Диапазон<br>рабочей<br>темпера-<br>туры, С | Время<br>реакции,<br>с |
|--------------------------------------------------|------------------|---------------------|----------------------------|-----------------------|--------------------------|----------------------------------|--------------------------------------------|------------------------|
| zuónuú                                           | K11-P            | RT.K-<br>R11.d.L    | -                          | -                     | 1,0; 2,0;<br>4,0         | Н                                | -40+800                                    | 3,0                    |
|                                                  | К1-ВП            | RT.K-               | 3,0                        | 200,0 400,0           |                          | Н                                | -40 +800                                   | 5,0                    |
| встроенный погружной                             | KI-BII           | K1.X.d.l            | 3,0                        | 200,0 400,0           | -                        | И                                | -40+600                                    | 7,0                    |
| встроенный воздушный                             | К1-ВВ            | RT.K-<br>K1A.X.d.l  | 3,0                        | 200,0 400,0           | -                        | Н                                | -40+800                                    | 30,0                   |
| 1                                                | к1-кп            | RT.K-<br>K1P.d.l.L  | 1,6                        | 200,0                 | 2,0                      | И                                | -50+800                                    | 3,0                    |
| с кабелем погружной                              |                  |                     | 3,2                        | 100,0 500,0           |                          |                                  |                                            | 5,0                    |
| с кабелем поружной с фторопластовым<br>покрытием | К1-КПФ           | RT K-<br>K1PT.d.l.L | 3,2                        | 100,0 300,0           | 2,0                      | И                                | -50+250                                    | 10,0                   |
| поверхностный                                    | КП               | RT.K-<br>K1S.L      | -                          | -                     | 2,0                      | Н                                | -50+400                                    | 60,0                   |

При необходимости измеритель может быть укомплектован удлинительными или соединительными кабелями. Кабели удлинительные предназначены для увеличения расстояния от измерителя до термопреобразователя, а также для использования встроенных термопреобразователей исполнений ВП, ВВ в качестве кабельных(выносных). Кабели соединительные предназначены для подключения к измерителю IT-8 внешних термопреобразователей, в том числе стационарно установленных на объекте.

Таблица 4. Кабели удлинительные

| Обзначение | Конструктивное исполнение | Для термопреобразователей | Длина, кабеля, м |
|------------|---------------------------|---------------------------|------------------|
| CK1-K      | =0-10                     | XA(H)                     | 1,0; 2,0; 4,0    |
| C1-2       | IIII                      | сопротивления             | 1,0; 2,0; 4,0    |
| C2-2       |                           | сопротивления             | 1,0              |

Таблица 5. Кабели соеденительные

| Обзначение | Конструктивное исполнение | Для термопреобразователей | Длина, кабеля, м |
|------------|---------------------------|---------------------------|------------------|
| CK2-K      |                           | XA(H)                     | 2,0              |
| C1-1       | <b>II</b>                 | сопротивления             | 1,0; 2,0; 4,0    |
| C2-1       |                           | сопротивления             | 1,0              |

# 2.2.1 Термогигрометр ИТ5-ТР «Термит»

Термогигрометр может применяться в пищевой и строительной промышленности, в коммунальном и сельском хозяйствах и других отраслях.

### ИТ5-TP-X

- 1 датчик встроенный
- 2 датчик выносной

Исполнение по способу подключения датчика

- Одновременное отображение на индикаторе термогигрометра значений температуры и относительной влажности
- Энергонезависимая память на 30 значений
- Простая юстировка
- Индикация разряда батареи

# Описание прибора

Гигрометр (термогигрометр) ИТ5-ТР предназначен для измерения температуры и относительной влажности воздуха в жилых, складских и производственных помещениях. Измеренные значения отображаются на цифровом индикаторе прибора.

### Дополнительные возможности:

- обеспечивает индикацию при обрыве и коротком замыкании датчиков;
- имеет электронный архив емкостью до 30 измеренных значений температуры и относительной влажности;
- обеспечивает индикацию снижения напряжения питания из-за разряда элементов питания;
- снабжен функцией автоматического отключения питания в течение 10 мин после последнего нажатия одной из кнопок управления.





| Диапазон измерения                                  | • температуры: -30+85 °C<br>• влажности: 598 %                      |
|-----------------------------------------------------|---------------------------------------------------------------------|
| Погрешность измерения                               | <ul> <li>температуры: ±1,0 °C</li> <li>влажности: ±3,0 %</li> </ul> |
| Инерционность                                       | не более 2 мин.                                                     |
| Время непрерывной работы до смены элементов питания | 300 ч.                                                              |
| Температура эксплуатации                            | +5+55 °C                                                            |
| Габаритные размеры                                  | 140х73х27 мм                                                        |

# 2.2.2 Гигрометр IT-8-RHT

Гигрометр IT—8—RHT предназначен для измерения относительной влажности воздуха и температуры в жилых, производственных, складских помещениях, а также на открытом воздухе (свободной атмосфере) с возможностью одновременного измерения температуры различных объектов в широком диапазоне и с высокой точностью.

### IT-8-RHT-X

- 1 повышенной точности
- 2 нормальной точности
- Широкий диапазон температуры эксплуатации -40°С...+55°С;
- Дополнительный датчик температуры;
- Высокая точность измерения;
- Низкая дополнительная температурная погрешность;
- Яркий большой светодиодный индикатор;
- Возможность пользовательской юстировки без нарушения заводской настройки;
- Прочный, герметичный, с прорезиненными вкладышами корпус.

# Описание прибора

Отличительной особенностью нового термометра — гигрометра портативного IT-8-RHT от большинства аналогов является наличие дополнительного входа с HCX Pt1000 для измерения температуры в широком диапазоне и с высокой точностью. Датчик температуры входит в комплект поставки. При необходимости можно заказать датчик температуры другого конструктивного исполнения.

В комплект поставки прибора входит соединительный кабель позволяющий реализовывать два варианта исполнения прибора: со встроенным преобразователем и с выносным преобразователем температуры и влажности.

# Сервисные функции IT-8-RHT

- Перерасчет измеренных значений относительной влажности и температуры в температуру точки росы. Данный параметр является справочным;
- Запоминание максимального, минимального значений;
- Звуковая, световая сигнализация о выходе за заданный порог;
- Возможность корректировки сдвига и наклона характеристики:
- Автоматическое отключение питания через 1...60 мин.:
- Диагностика состояния элементов питания;
- Автоматический переход в экономичный режим;
- Возможность подключения к прибору внешних датчиков с HCX Pt1000.



## Технические характеристики

| Наименование                                        | Значение                                                                                               |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Количество каналов измерения                        | 2 канала (1 - измерение относительной влажности и температуры, 2 - измерение температуры)              |
| Разрешающая способность                             | 1 канал: отн. влажности — 0,1%; температуры — 0,1°C<br>2 канал: –200 –100°C — 1°C; –99,9+800°C — 0,1°C |
| Постоянная времени измерения по 1-му каналу         | относительной влажности: не более 2 мин. температуры: не более 5 мин.                                  |
| Время обновления показаний на индикаторе            | 1 канал: 10 сек.<br>2 канал: 1 сек.                                                                    |
| Питание                                             | четыре элемента типа ААА напряжением 1,5В                                                              |
| Температура эксплуатации                            | -40 +55 °C                                                                                             |
| Время непрерывной работы до смены элементов питания | до 200 ч.                                                                                              |

| Обозначение прибора по | Диапазон измеряемой величины /пределы допускаемой абсолютной погрешности  1-ый канал: отн. влажность, % 1-ый канал: температура, °С 2-ый канал: температура, °С |                                         |                           |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|--|--|--|
| точности измерения     |                                                                                                                                                                 |                                         |                           |  |  |  |
| IT-8-RHT-1             | 080,0 / ±2,5<br>80,098,0 / ±3,5                                                                                                                                 | -10,0+85,0 / ±0,4                       | -200+800 / ±(0,2+0,001T*) |  |  |  |
| IT-8-RHT-2             | 080,0 / ±3,5<br>80,098,0 / ±4,5                                                                                                                                 | -40,0+10,0 / ±0,8<br>+85,0+125,0 / ±0,8 | (без датчика температуры) |  |  |  |

Т\* – температура контролируемой среды, °С.

При использовании преобразователя температуры и влажности без удлинительного кабеля диапазон измеряемой температуры по І-му каналу не может быть больше диапазона температуры эксплуатации прибора.

# Примечания:

- 1. Диапазон измерения температуры гигрометра по второму каналу с термопреобразователем равен области пересечения диапазонов измерения гигрометра и термопреобразователя, а суммарная абсолютная погрешность равна сумме абсолютных погрешностей гигрометра и термопреобразователя.
- 2. С целью уменьшения суммарной погрешности гигрометра и 4. Преобразователь температуры и влажности является взаимозатермопреобразователя в приборе имеется возможность юстировки введением поправочных коэффициентов.
- 3. Дополнительная погрешность второго канала гигрометра, вызванная изменением температуры окружающей среды в рабочем диапазоне от номинального значения плюс 20°C - не более:  $\pm (0,1+0,0006T)$ °С на каждые 10°С изменения температуры окружающей среды.
  - меняемым.

# Термопреобразователь сопротивления (Pt1000) для гигрометра IT-8-RHT

| Наименование                    | ТСПr-K1И-Pt1000-B.2/ -50+180°C/ - D x I x L |  |  |  |
|---------------------------------|---------------------------------------------|--|--|--|
| Чертеж                          | ** ** ** ** ** ** ** ** ** ** ** ** **      |  |  |  |
| Диапазон измеряемой температуры | - 50+ 180°C                                 |  |  |  |
| Диаметр монтажной части, d, мм  | 2,0                                         |  |  |  |
| Длина монтажной части, l, мм    | 100                                         |  |  |  |

Класс допуска В - [ $\pm$ (0,30+0,005 x | t |], где t - измеряемая температура, °C. Длина присоединительного кабеля – 2,0 м.

# 2.3 Мультиметр IT-8-RUT прецизионный двухканальный

### Мультиметр предназначен для измерения:

- напряжения постоянного тока;
- сопротивления постоянному току;
- температуры по сигналу термометра сопротивления;
- температуры по сигналу преобразователя термоэлектрического.

Мультиметр может использоваться для контроля термометров сопротивления и преобразователей термоэлектрических при их производстве и эксплуатации, для измерениях сверхмалых напряжений постоянного тока и сопротивлений постоянному току, для измерения температуры с высокой точностью. Благодаря прочному герметичному корпусу и низкой величине дополнительной температурной погрешности мультиметр может использоваться как в лабораторных, так и в полевых условиях.

- Два независимых канала измерения
- Широкий диапазон измерений при высокой точности
- Два в одном- прецизионный мультиметр и высокоточный термометр
- Датчик температуры Pt100 в комплекте.

# Описание прибора

### Прибор имеет два независимых канала измерения:

**І-й канал** предназначен для измерения электрического сопротивления и температуры по четырехпроводной схеме соединения и снабжен круглым герметичным соединителем, расположенным в нижней части корпуса; в качестве первичных преобразователей температуры используются термопреобразователи сопротивления с НСХ в соответствии с ГОСТ 6651—2009: 50M: 100П: Pt100: Pt1000.

**ІІ-й канал** предназначен для измерения электрического напряжения и температуры и снабжен плоским 2–х контактным соединителем, расположенным в верхней части корпуса прибора. В качестве первичных преобразователей температуры используются преобразователи термоэлектрические с HCX в соответствии с ГОСТ Р 8.585–2001 — XA(K); ТПП(S); ТПП(R).

На цифровой индикатор прибора выводится измеренное значение с одного выбранного канала, переключение между каналами осуществляется нажатием соответствующей кнопки на клавиатуре прибора.

Для измерения напряжения и сопротивления мультиметр комплектуется специальными соединителями. Термометры сопротивления и преобразователи термоэлектрические в комплект поставки мультиметра не входят и заказываются отдельно.





# Сервисные функции IT-8-RUT

- Запоминание максимального, минимального значений;
- Звуковая, световая сигнализация о выходе за заданный порог;
- Возможность корректировки сдвига и наклона характеристики;
- Автоматическое отключение питания через 1...60 мин.;
- Диагностика состояния элементов питания;
- Автоматический переход в экономичный режим.

# Технические характеристики

| Наименование измеряемого параметра | Диапазон измеряемо<br>допускаемой абсол                                          | Дискретность отсчета (разрешение)            |                                  |
|------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|
|                                    | I канал                                                                          | I I канал                                    |                                  |
| Электрическое сопротивление, Ом    | 02800 ±(0,005+0,0003R*)                                                          | -                                            | до 160 — 0,001; свыше 160 — 0,01 |
| Напряжение постоянного тока, мВ    | -                                                                                | 0170 ±(0,004+0,0003U*)                       | 0,001                            |
| Температура, °C                    | -100+200 (50M)<br>-200+800 (100T; Pt100)<br>-200+500 (Pt1000)<br>±(0,2+0,0001T*) | -                                            | 0,1                              |
| Температура, °С                    | -                                                                                | -50+1700 (ΤΠΠ(S); ΤΠΠ(R))<br>±(0,5+0,0005T*) | 0,1                              |

<sup>\* -</sup> измеряемая величина

Электропитание прибора осуществляется от четырех элементов питания типа ААА номинальным напряжением 1,5 В или 1,2 В.

# Термопреобразователь сопротивления (Pt100) для IT-8-RUT

| Наименование                    | ТСПr-К1И-Pt100-B.2/ −50+180°C/ − D x l x L |  |  |
|---------------------------------|--------------------------------------------|--|--|
| Чертеж                          | 65                                         |  |  |
| Диапазон измеряемой температуры | - 50+ 180°C                                |  |  |
| Диаметр монтажной части, d, мм  | 2,0                                        |  |  |
| Длина монтажной части, l, мм    | 100                                        |  |  |

Класс допуска В - [ $\pm$ (0,30+0,005 x I t I], где t - измеряемая температура, °C.

# 2.4 Индикатор температуры шестиканальный ИТ6-6

Индикатор температуры ИТ6-6 применяется в пищевой промышленности, сельском и коммунальном хозяйствах, в машиностроении, на железнодорожном транспорте и других отраслях промышленности.

# **VT6-6. X 50М XK(L)**тип входа

- Шесть каналов измерения
- Автоматический или ручной опрос каналов
- Простой и удобный в работе

# Описание прибора

Индикатор температуры цифровой шестиканальный ИТ6–6 предназначен для измерения температуры твердых, газообразных, жидких и сыпучих сред и металлических поверхностей и т. д.



| Количество измерительных каналов                               | 6                        |
|----------------------------------------------------------------|--------------------------|
| Тип входа                                                      | 50M, XK(L)               |
| Диапазон измеряемой температуры:<br>- 50M<br>- XK(L)           | -30+160 °C<br>-50+750 °C |
| Разрешающая способность:<br>- 50M<br>- XK(L)                   | 0,2 °C<br>1,0 °C         |
| Предел допускаемой абсолютной погрешности:<br>- 50M<br>- XK(L) | ±1,0 °C<br>±(2+0,005t)°C |
| Потребляемая мощность                                          | не более 4,5 ВА          |
| Питание                                                        | 220 В + 10-15%, 50 Гц    |
| Время установления рабочего режима                             | не более 3 сек.          |
| Средний срок службы                                            | 3 года                   |
| Габаритные размеры корпуса Щ1                                  | 96х48х100 мм             |
| Степень защиты корпуса со стороны передней панели              | IP54                     |
| Macca                                                          | не более 0,4 кг          |
| Климатическое исполнение                                       | УХЛ 3.1 по ГОСТ 1515069  |
| Температура эксплуатации                                       | +5+55 °C                 |
|                                                                |                          |

# 2.5 Индикатор токовых сигналов ИТС 4-20

Индикатор ИТС 4-20 предназначен для контроля различных технологических производственных процессов, путем преобразования сигнала 4... 20 мА в физическую величину (температуру, давление, относительную влажность) и ее отображение на цифровом индикаторе.

- Отображение на ж/к индикаторе измеряемой величины с размерностью
- Масштабирование
- Высокая точность
- Герметичный корпус
- Простая настройка
- Два канала индикации

# Описание прибора

Индикатор сигналов тока ИТС 4-20 предназначен для отображения сигналов 4..20 мА в выходных цепях датчиков в единицах физической величины.

ИТС 4-20 изготовлен в герметичном корпусе, имеющем два гермоввода для ввода и вывода линий 4...20 мА.

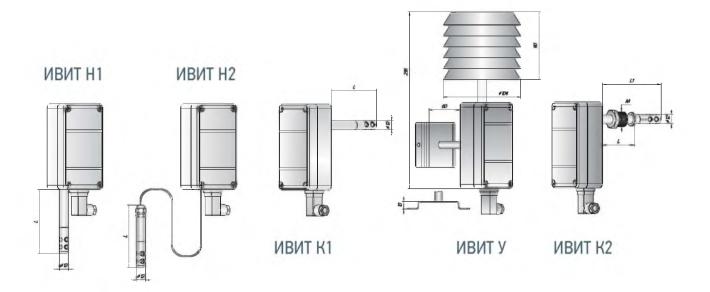
Индикатор сигналов тока не имеет отдельного питания и «питается» с линии 4...20 мА. «Разорвите» электрическую цепь 4...20 мА с датчиков в месте установки индикатора. Снимите крышку с ИТС 4-20. Подключите концы цепи к клеммам прибора. Установите при помощи двух кнопок размерности для каждого канала отдельно, например: °С и RH%; диапазон индицируемых величин, например для первого канала: 0...120 °С, для второго канала 0...100 RH%; глубину фильтра и, при необходимости, произведите юстировку по каждому каналу.



| Диапазон напряжения питания    | 536 B            |
|--------------------------------|------------------|
| Количество каналов измерения   | 2                |
| Тип входа                      | 420 mA           |
| Погрешность преобразования     | ±0,25%           |
| Диапазон индицируемых значений | -9999999         |
| Время опроса канала            | 3 сек.           |
| Потребляемая мощность          | 0,2 Вт           |
| Габаритные размеры корпуса     | 90х55х25 мм      |
| Температура эксплуатации       | +5+550C          |
| Macca                          | не более 0,18 кг |

# 2.6 Измерители влажности и температуры ИВИТ-М

Измерители ИВИТ-М предназначены для измерения относительной влажности и температуры воздуха и неагрессивных газов в производственных, складских и бытовых помещениях, а также в свободной атмосфере. ИВИТ-М внесены в Гос. реестр средств измерений, а значит, могут использоваться в сферах гос. регулирования.




- Взаимозаменяемый чувствительный элемент без потери точности;
- Высокая точность измерения;
- Высокая стабильность показаний;
- Яркий светодиодный индикатор;
- Встроенный микронагреватель чувствительного элемента для защиты от конденсации влаги;
- Расширенный диапазон температуры эксплуатации;
- Различные конструктивные исполнения

Имеется широкий ассортимент конструктивных исполнений, определяющих область применения измерителей: для использования вне здания (У), для установки на стену (Н1 и Н2), в воздухопровод или термокамеру (К1 и К2).

В измерителях ИВИТ-М используются разъемы, позволяющие подключать их к внешним линиям без вскрытия корпуса и нарушения пломбировки.





# Описание прибора

В приборах ИВИТ-М применяются современные высококачественные сенсоры емкостного типа, имеющие высокую временную и температурную стабильность параметров. Тип используемого сенсора определяет технические параметры и класс точности прибора. Измерители различаются по типу выходного сигнала:

- **ИВИТ-М.Т** -два токовых 4...20 мА;
- ИВИТ-M.RS цифровой RS485 Modbus;
- ИВИТ-М.Е цифровой Ethernet.

Измеритель ИВИТ-М.Т имеет яркий светодиодный индикатор с питанием от токовой петли 4...20 мА. Приборы ИВИТ-М.RS и ИВИТ-М.Е могут быть снабжены модулем двухпозиционного регулирования с двумя выходными электромагнитными реле. Измерители ИВИТ-М.Е могут иметь одну или несколько дополнительных опций: Ж/к индикатор, электронный архив, двухпозиционный регулято.

ИВИТ-М имеет встроенную защиту от конденсации влаги на сенсоре. При относительной влажности выше 95 % автоматически включается нагрев микронагревателя сенсора, обеспечивающего повышение температуры сенсора примерно на 5 °C выше температуры окружающей среды. При этом относительная влажность вблизи сенсора уменьшается и предотвращается конденсация влаги.

### Основные исполнения ИВИТ-М

| Nº<br>п/п | Основное<br>исполнение | Выходной сигнал      | Дополнительные возможности                                                                            | Опции                                                                                    |
|-----------|------------------------|----------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1         | ИВИТ-М.Т               | 2х420 мА             | • Светодиодный индикатор, индикация температуры точки росы                                            | -                                                                                        |
| 2         | ИВИТ-M.RS              | RS485Modbus          | • Программа конфигуратор с возможностью работы с данными                                              | P-регулирование по двухпозиционному<br>закону                                            |
| 3         | ИВИТ.М.Е               | Ethernet(IEE 802.3X) | Modbus TCP/IP     DNS клиент SMTP,P0P3,NTP     Программа конфигуратор с возможностью работы с данными | P-регулирование по двухпозиционному<br>закону<br>A- электронный архив<br>И-ж/к индикатор |

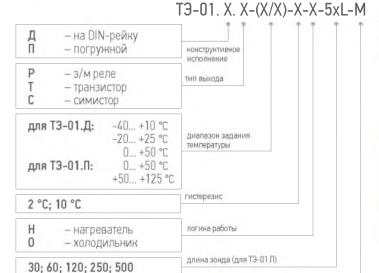
# Технические характеристики

| Диапазон измерения                                                   | Относительная влажность: 595 %<br>Температура: -40+50 °C (H1, У); -40+60 °C (H2, К1, К2)     |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Напряжение питания                                                   | 1836 В (ИВИТ-М.Т); 2226 В (ИВИТ-М.RS, ИВИТ-М.Е)                                              |
| Температура эксплуатации                                             | -40+50 °C                                                                                    |
| Степень защиты корпуса первичного преобразователя                    | IP40 (H1, H2, K1, K2); IP43 (V)                                                              |
| Степень защиты корпуса вторичного преобразователя (электронный блок) | IP54                                                                                         |
| Габаритные размеры первичного преобразователя                        | Ø 12 мм, l=160 мм (H1, H2)<br>Ø 12 мм, l=160, 200, 300 мм (K1, K2)<br>Ø 100 мм, l=100 мм (У) |
| Габаритные размеры вторичного преобразователя (электронный блок)     | 115х65х40 мм                                                                                 |

# Абсолютная погрешность в зависимости от исполнения по точности измерения

| Измеряемая величина                               | Абсолютная погрешность<br>(исполнение 1) | Абсолютная погрешность<br>(исполнение 2) |
|---------------------------------------------------|------------------------------------------|------------------------------------------|
| Относительная влажность в диапазоне 10 90 %       | ±2,5 %                                   | ±3,0 %                                   |
| Относительная влажность в диапазоне 510 %; 9095 % | ±3,0 %                                   | ±4,0 %                                   |
| Температура в диапазоне -10+60 °С                 | ±1,5 °C                                  | ±2,0 °C                                  |
| Температура в диапазоне -4010 °C; +60+100 °C      | ±2,0 °C                                  | ±2,5 °C                                  |

Для контроля абсолютной погрешности прибора непосредственно на объекте, где он установлен можно использовать набор для юстировки, включающий в себя набор определенных солей, расфасованных в специальные емкости с заданным размером горловины. Для контроля погрешности необходимо снять с зонда первичного преобразователя прибора защитный колпачок, при помощи пипетки смочить соль в одной из емкостей, надеть емкость на первичный преобразователь вместо защитного колпачка. Через 0,5...2,0 часа в емкости будет создана определенная влажность, соответствующая табличному значению.


# Программа конфигуратор CONFIG-IVIT.EXE

ИВИТ-M.RS и ИВИТ-M.E, а также для полу- работы с архивом и электронной почтой. чения данных, визуализации их в виде таблиц и графиков, экспорта данных в формате Excel.

Программа CONFIG-IVIT.EXE размещена на Программа позволяет задать сетевой адрес и имя прибора, установить необходимую скосайте производителя www.relsib.com, пре- рость обмена и период опроса. При помощи ПО можно задать уставки регулирования доставляется бесплатно и предназначена для прибора снабженного регулятором, отследить состояние контактов э/м реле регулядля поиска в сети и настройки приборов: тора. При помощи программы ПО можно легко настроить прибор с выходом Ethernet для

# 3.1 Термостат электронный ТЭ-01

Термостат ТЭ-01представляет собой автоматическое устройство и предназначен для точного поддержания температуры путем управления нагревательным или охладительным устройством объекта контроля. ТЭ-01.Д предназначен для использования в газообразных средах, для поддержания температуры в шкафах управления и технологическом оборудовании. ТЭ-01.П предназначен для поддержания температуры жидких и газообразных сред.



- Высокая точность поддержания температуры
- Гистерезис от 2°C
- Широкий диапазон температуры эксплуатации



# Описание прибора

M 16x1,5; 1/4"

Закон регулирования – двухпозиционный. Задаваемая пользователем уставка и выбранный при заказе термостата алгоритм работы (нагрев или охлаждение) обеспечивают возможность управления нагревательными или охладительными установками. Уставка задается пользователем ручкой потенциометра электронного термостата. Имеется встроенный чувствительный элемент температуры.

размер резьбы штуцера (для ТЗ-01 П)

|                                                               | ТЭ-01.Д                                                                                                                                                                                     | ТЭ-01.П                                                                   |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Диапазон задания температуры<br>отключения и точность задания | Основные диапазоны: -40+10°С; -20+25°С<br>±5°С; О+50°С<br>Дополнительные диапазоны (под заказ): -4026°С;<br>-3015°С; -2510°С; -160°С; -9+9°С±2,5°С; О+19°С;<br>+10+30°С; +20+40°С; +30+55°С | Ŭ+50°C; +5Ŭ+125°C ±3°C                                                    |
| Гистерезис (указывается при заказе)                           | 2°C; 10°C                                                                                                                                                                                   | 2°C; 10°C                                                                 |
| Стабильность поддержания температуры отключения и гистерезиса | ±0,5 °C                                                                                                                                                                                     | ±0,5°C                                                                    |
| Напряжение питания                                            | ТЭ-01.Д.Р AC 198242 B;<br>ТЭ-01.Д.С AC 198242 B;<br>ТЭ-01.Д.Т DC 1230 B                                                                                                                     | AC 198242 B                                                               |
| Номинальный ток нагрузки                                      | ТЭ-01.Д.Р — 7,0А при соѕ φ ≥ 0,6;<br>ТЭ-01.Д.С — 1,0 А; ТЭ-01.Д.Т — 50 мА                                                                                                                   | ТЭ-01.П.Р — 5,0 А при соѕ φ ≥ 0,6<br>ТЭ-01.П.С — 1,0 А; ТЭ-01.П.Т — 50 мА |
| Габаритные размеры корпуса                                    | 65х45х29 мм                                                                                                                                                                                 | 50х52х35 мм                                                               |
| Масса                                                         | не более 0,15 кг                                                                                                                                                                            | не более 0,15 кг                                                          |

# 3.2 Терморегулятор Ратар-01

Терморегуляторы Ратар-01 применяются в качестве встроенного блока управления тепловыми электрическими котлами, водонагревателями, электрическими термокамерами и другими системами.

# Ратар-01. Х

**п/п** – полупроводниковый **ХК(L)** – термопарный

тип входа

- Дополнительный вход для подключения датчика уровня, дополнительных устройств температурной защиты: термореле, термовыключателей и т.д. (в исполнении с типом входа п/п)
- Простой и удобный в работе
- Крепление на DIN-рейку

# Описание прибора

Терморегулятор Ратар-01 предназначен для поддержания температуры. Закон регулирования — двухпозиционный. Величина гистерезиса жестко задана.

### Измерение температуры при помощи датчиков:

- преобразователей термоэлектрических типа ХК(L)
- термопреобразователей полупроводниковых (п/п) с аналоговым выходом.



|                                                | Ратар-01.п/п                | Ратар-01.XK(L)              |
|------------------------------------------------|-----------------------------|-----------------------------|
| Диапазон измерения и регулирования температуры | -40+120 °C                  | 0+500 °C                    |
| Точность задания уставки                       | ±5 °C                       | ±10 °C                      |
| Гистерезис                                     | (2±1) °C                    | (2±1) °C                    |
| Напряжение питания                             | (220±22)B                   | (220±22)B                   |
| Тип выходного устройства, коммутируемый ток    | э/м реле, 10 А при соѕф>0,6 | э/м реле, 10 А при соѕф≥0,6 |
| Наличие дополнительного входа*                 | +                           | -                           |
| Температура эксплуатации                       | +5+55 °C                    | +5+55 °C                    |
| Габаритные размеры                             | 72х88х54 мм                 | 72х88х54 мм                 |
| Macca                                          | не более 0,4 кг             | не более 0,4 кг             |

<sup>\* —</sup> Регулятор Ратар-01.п/п имеет дополнительный вход, который можно использовать для дополнительной защиты объекта регулирования при подключении к регулятору термовыключателя, датчика уровня и т.д. Например, при подключении кондуктометрического датчика уровня и понижении уровня жидкости ниже заданного, происходит размыкание контактов реле терморегулятора. При повышении уровня — контакты вновь замыкаются.

# 3.3 Терморегулятор Ратар-02 с полууниверсальным входом

Терморегулятор применяется в качестве блока управления тепловыми электрическими котлами, водонагревателями, электрическими термокамерами, холодильными агрегатами и другими системами. Терморегулятор в настенном исполнении применяется в саунах, овощехранилищах, погребах, инкубаторах и т.п.



- Яркий светодиодный индикатор
- Интуитивно-понятная настройка
- Высокая точность
- Возможность смещения нуля и наклона без нарушения юстировки (для ТС и ТП)
- Пять типов логики выходного устрой-



# Описание прибора

Ратар-02 – микропроцессорный терморегулятор с ярким светодиодным индикатором.

Терморегуляторы Ратар-02.п/п и Ратар-02.ТС имеют дополнительный вход для подключения датчика уровня, что позволяет использовать их для управления работой водонагревателей, электрокотлов и т.д.

У регуляторов Ратар-02.ТП и Ратар-02.ТС типы НСХ входов переключаются программно.

|                                                                                                   | Ратар-02.п/п                                                                                                           | Ратар-02.ТП                                                                                                                                                      | Ратар-02.ТС                                                                                        |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Диапазон измерения и регулирования<br>температуры                                                 | -40+125 °C                                                                                                             | -50+750 °C (XK(L))<br>-50+1300 °C (XA(K))                                                                                                                        | -50+200 °C (50M)<br>-200+650 °C (100Π,<br>Pt100)                                                   |
| Точность измерения                                                                                | ±2 °C                                                                                                                  | ±(2+0,003T) °C (±0,5%)                                                                                                                                           | ±0,15%                                                                                             |
| Разрешающая способность (дискретность)                                                            | 0,1 °C                                                                                                                 | 1,0 °C                                                                                                                                                           | 1,0 °C: -200100 °C<br>0,1 °C: -99,9+650 °C                                                         |
| Гистерезис                                                                                        | 030 ℃                                                                                                                  | 0400 °C (XK(L))<br>0750 °C (XA(K))                                                                                                                               | 0125 °С (50M)<br>0400 °С (100П, Pt100)                                                             |
| Напряжение питания                                                                                | 198242 B                                                                                                               | 198242 B                                                                                                                                                         | 150250 B                                                                                           |
| Номинальный ток нагрузки                                                                          | э/м реле: 5,0 А при соs ф<br>напряжении 5,56,5 В                                                                       | ≥ 0,6; оптосимистор: 200 мА; ог                                                                                                                                  | ітотранзистор: 50 мА при                                                                           |
| Наличие дополнительного входа<br>для подключения датчика уровня<br>(термопереключателя и т.д.)    | +<br>сопротивление<br>«сухого» датчика<br>уровня > 300 кОм,<br>сопротивление<br>«влажного» датчика<br>уровня ≨ 100 кОм | -                                                                                                                                                                | + сопротивление «сухого» датчика уровня > 300 кОм, сопротивление «влажного» датчика уровня 100 кОм |
| Тип корпуса:<br>Д1 — 72x88x54 мм<br>H2 — 82x128x63,5 мм<br>Щ1 — 96x48x112 мм<br>Щ3 — 48x48x112 мм | +<br>+<br>+<br>+                                                                                                       | +<br>-<br>+<br>+                                                                                                                                                 | +<br>-<br>+<br>+                                                                                   |
| Программируемая логика работы выходного устройства                                                | в заданных границах, 4-                                                                                                | 1— нагреватель, 2— холодильник, 3— сигнализатор нахождения<br>в заданных границах, 4— сигнализатор выхода за заданные границы,<br>5— режим индикации температуры |                                                                                                    |
| Задание смещения нуля и наклона без нарушения юстировки                                           | ~                                                                                                                      | +                                                                                                                                                                | +                                                                                                  |
| Задание задержки включения-выключения выходного устройства                                        | +                                                                                                                      | +                                                                                                                                                                | +                                                                                                  |
| Macca                                                                                             | не более 0,40 кг                                                                                                       | не более 0,40 кг                                                                                                                                                 | не более 0,40 кг                                                                                   |

# 3.4 Терморегулятор Ратар-02-1

Терморегулятор Ратар-02-1 применяется в качестве блока управления для водонагревателей, тепловых котлов, тепловентиляторов, термокамер.

### Ратар-02-1-X-X конструктивное исполнение Щ1 – в щитовом корпусе дополнительный вход для – э/к манометра подключения У — датчика уровня кондуктометрического

- Очень простое управление при помощи 2-х потенциометров или кнопок
- Дополнительное аварийное реле
- Дополнительный вход для подключения э/к манометра или датчика уровня



# Описание прибора

Терморегулятор Ратар-02-1 может работать по одному из четырех типов логики выходного устройства: прямой, обратный, U -образный или П -образный гистере-

Терморегулятр работает с термопреобразователем типа п/п с полупроводниковым чувствительным элементом. Прибор имеет максимально упрощенный интерфейс пользователя. Задавать уставки можно как при помощи кнопок, так и при помощи потенциометров. При изменении положения потенциометра индикатор прибора

автоматически переключается с режима индикации текущего значения на индикацию значения соответствующей потенциометру уставки. Терморегулятор имеет аварийное реле, работу которого можно включать или отключать при настройке.

### Аварийное реле срабатывает при:

- температуре выше 95 С,
- -давлении ниже нормы( для Ратар-02-1-Щ1-М), уровне теплоносителя ниже нормы( для Ратар-02-1-Щ1-У).

Для работы Ратар-02-1-Ш1-М необходимо применять электроконтактный манометр с замкнутыми контактами при пониженном давлении, для Ратар-02-1-Щ1-У – датчик уровня кондуктометрический.

| Диапазон задания температуры отключения                                             | 0+95 °C          |
|-------------------------------------------------------------------------------------|------------------|
| Диапазон задания гистерезиса (разности между температурами вкл. и выкл.)            | 020 °C           |
| Точность задания уставки                                                            | 1,0 °C           |
| Разрешающая способность измерения                                                   | 0,1 °C           |
| Время установления рабочего режима, исчисляемое с момента включения терморегулятора | не более 3 с     |
| Напряжение питания                                                                  | 198242 B         |
| Номинальный коммутируемый ток                                                       | 7,0 A            |
| Температура срабатывания аварийного реле                                            | 95,0 °C          |
| Габаритные размеры                                                                  | 96х48х112 мм     |
| Macca                                                                               | не более 0,50 кг |

# 3.5 Регулятор температуры со встроенным таймером Ратар-02K

Регулятор температуры с таймером Ратар-02К применяется в качестве блока управления электрическими каменками для бань и саун, парогенераторами для саун, бань, фитобочек, ИК нагревателей саун, водонагревателями, электрическими термокамерами и другими системами.



- Два независимых канала управления
- Два цифровых индикатора
- Две уставки по времени
- Вход от датчика уровня
- Вход от термовыключателя
- Разрешение 0.1°C

# Описание прибора

Ратар-02К имеет два независимых канала управления: канал терморегулятора и канал таймера с двумя временными уставками. При соединении последовательно двух выходных каналов получаем прибор для управления электро-каменкой. При включении прибора начнет работать таймер, задающий временную задержку до включения терморегулятора. Далее включается терморегулятор, а таймер начинает отсчитывать время до выключения электро-каменки.

Используя два канала раздельно можно управлять работой фитобочки. Терморегулятор поддерживает температуру в парогенераторе. Таймер открывает-закрывает кран подачи пара в бочку, задавая тем самым время проведения процедуры. Наличие в приборе входа от датчика уровня позволяет автоматически контролировать уровень воды в парогенераторе. Наличие входа от внешнего термовыключателя позволяет повысить безопасность от превышения температуры, например, в сауне.

# Лучшее решение для эл.каменок и фитобочек



# Технические характеристики

| Диапазон задания температуры отключения | -40+125 °C                                                                                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|
| Гочность измерения температуры          | ±3 °C                                                                                               |
| Разрешение по температуре               | 0,1 °C                                                                                              |
| Диапазон задания гистерезиса            | 120 °С с шагом 0,1 °С                                                                               |
| Диапазон задания времени                | <ul> <li>до включения: 024 ч. с шагом 1 мин.</li> <li>до выключения: 16 ч. с шагом 1 мин</li> </ul> |
| Гок нагрузки                            | э/м реле — до 10 А, симистор — до 200 мА                                                            |
| Напряжение питания                      | 150240 В (50±1 Гц)                                                                                  |
| Габаритные размеры                      | 72х88х54 мм                                                                                         |
| Масса                                   | не более 0,4 кг                                                                                     |

# Датчик температуры для сауны ТС.п/п.Сауна.

Датчик имеет металлический корпус, окрашенный в светло-коричневый цвет (под дерево). Корпус имеет специальную конструкцию для повышения точности измерения температуры воздуха в сауне при его креплении к стене. Датчик содержит термочувствительный полупроводниковый элемент типа  $\pi/\pi$ , термовыключатель с ручным возвратом с температурой размыкания контактов  $140 \pm 5$  °C и клеммы для подключения кабеля.

# 3.6 Терморегулятор Ратар-02а, Ратар-02а-1

# со встроенным автоматом включения нагрузки

Терморегуляторы Ратар-02а, Ратар-02а-1 со встроенным автоматом включения нагрузки применяются для бытового и промышленного использования, например, для контроля и поддержания температуры в небольших жилых и производственных помещениях, гаражах, складах, погребах, для управления нагревателями, термокамерами, тепловентиляторами, ИК-нагревателями, конвекторами и т.д..

- Полностью законченное изделие, не требуется установки в шкаф
- Встроенный двухполюсный автомат включения нагрузки
- Удобный настенный корпус с клеммным отсеком
- Большой светодиодный двухразрядный индикатор
- Комплектуется выносным датчиком температуры



# Описание прибора

Удобный креплении настенный встроенный двухполюсный автомат включения нагрузки, большой светодиодный двухразрядный индикатор, высокая надежность за счет использования качественных современных элементов, большое значение коммутируемого тока, возможность юстировки с датчиком.

Терморегуляторы Ратар-02а, Ратар-02а-1 в базовой комплектации снабжены датчиком температуры с типом входа п/п, имеющим корпус из нержавеющей стали диаметром 5мм и длиной 30мм, который можно использовать как для контроля

температуры воздуха, так и воды и других, неагрессивных к материалу датчика, сред.

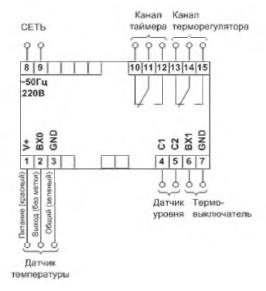
Для начала работы достаточно подключить к прибору питание, нагрузку и входящий в комплект поставки датчик температуры. Прибор готов к работе.



|                                                                          | Ратар-02а           | Ратар-02а-1         |
|--------------------------------------------------------------------------|---------------------|---------------------|
| Диапазон задания температуры отключения                                  | -9+99 °C            | -9+99 °C            |
| Диапазон задания гистерезиса (разности между температурами вкл. и выкл.) | 020 °C              | 020 ℃               |
| Погрешность измерения                                                    | ±2 °C               | ±2 °C               |
| Напряжение питания                                                       | 198242 B            | 198242 B            |
| Номинальный коммутируемый ток                                            | 10 А при соѕф ≥ 0,6 | 16 А при соѕф ≥ 0,6 |
| Максимальный коммутируемый ток                                           | 14 A                | 18 A                |
| Температура эксплуатации                                                 | -10+55 °C           | -10+55 °C           |
| Габаритные размеры                                                       | 128х82х63,5 мм      | 128х82х63,5 мм      |
| Macca                                                                    | не более 0,4 кг     | не более 0,4 кг     |

# 3.7 Регулятор температуры Ратар-03.2УВ

# двухканальный с универсальными входами


Предназначен для измерения и регулирования температуры и других физических параметров и может применяться для измерения и регулирования температуры в камере копчения, варки колбасы и контроля температуры внутри батона колбасы; измерения и регулирования температуры и относительной влажности в расстойном шкафу на хлебо-булочном предприятии (использование психрометрического датчика); измерения и регулирования температуры и давления в системе теплоснабжения и т. д.



- Измерение и регулирование температуры или другой физической величины по двум независимым каналам по двухпозиционному закону
- Регулирование по одному каналу по трехпозиционному закону (две уставки, два устройства управления)
- Работа в режиме милливольтметра
- Отображение измеренных величин в необходимых единицах (масштабирование)
- Отображение на алфавитно-цифровом ЖК-дисплее одновременно значений измеряемых величин и выставленных уставок
- Возможность подключения к двум входам датчиков разных типов
- Измерение и регулирование: по одному каналу – физической величины, по другому каналу – разницы физических величин

# Описание прибора

Терморегулятор Ратар-03.2УВ имеет два универсальных входа и два канала управления по двухпозиционному закону. Также можно реализовать трехпозиционный закон регулирования по одному каналу, регулирование по разнице сигналов с двух входов. Прибор может работать со всеми датчиками, имеющими на выходе унифицированный токовый сигнал или сигнал в виде напряжения от нескольких милливольт. В приборе предусмотрна возможность масштабирования сигнала и индикация в необходимой физической величине. В терморегуляторе применен двухстрочный алфавитно-цифровой ж/к индикатор с подсветкой повышенной контрастности. Пользовательский интерфейс очень понятный, построен в виде многоуровневого меню. Терморегулятор имеет высокую точность, от 0,1 %. Предусмотрена возможность уменьшения измерительного тока до 0,5 мА при работе с миниатюрными термопреобразователями.



# Тип входа (программируется пользователем):

| Тип первичного<br>преобразователя | Диапазон измеряемых<br>температур, °С | Разрешающая<br>способность, °С | Пределы допускаемой приведенной основной погрешности, % |
|-----------------------------------|---------------------------------------|--------------------------------|---------------------------------------------------------|
| TXK(E)                            | -2701000                              | 1 (0,1*)                       | ±0,25 (свыше 50°С)<br>±0,5 (ниже 50°С)                  |
| TXA(K)                            | -2701372                              | 1 (0,1*)                       |                                                         |
| TΠΠ(R)                            | -501768                               | 1 (0,1*)                       |                                                         |
| TΠΠ(S)                            | -501768                               | 1 (0,1*)                       |                                                         |
| TMK(T)                            | -270400                               | 1 (0,1*)                       |                                                         |
| TXK(L)                            | -200800                               | 1 (0,1*)                       |                                                         |
| 50M (W <sub>10</sub> =1,426)      | -50+200                               | 0,1                            | ±0,15                                                   |
| 100M (W <sub>100</sub> =1,426)    | -50+200                               | 0,1                            |                                                         |
| 50M (W <sub>100</sub> =1,428)     | -50+200                               | 0,1                            |                                                         |
| 100M (W <sub>10</sub> =1,428)     | -50+200                               | 0,1                            |                                                         |
| Pt100 (W <sub>100</sub> =1,385)   | -200+850                              | 1 (0,1)*                       |                                                         |
| Pt1000 (W <sub>100</sub> =1,385)  | -200+850                              | 1 (0,1)*                       |                                                         |
| Pt100 (W <sub>100</sub> =1,391)   | -200+600                              | 1 (0,1)*                       |                                                         |
| Pt1000 (W <sub>100</sub> =1,391)  | -200+600                              | 1 (0,1)*                       |                                                         |
| Ni50 (W <sub>100</sub> =1,617)    | -60+180                               | 0,1                            |                                                         |
| Ni100 (W <sub>100</sub> =1,617)   | -60+180                               | 0,1                            |                                                         |
| п/п (ТС1047)                      | -40+125                               | 0,1                            | 0,5                                                     |

<sup>\* -</sup> разрешающая способность 0,10С обеспечивается для диапазона -99,9...999,9 °С

| Измеряемая величина | Диапазон измерений | Пределы допускаемой основной<br>приведенной погрешности, % |
|---------------------|--------------------|------------------------------------------------------------|
| Ток, мА             | 05 / 020 / 420     | ±0,1**                                                     |
| Напряжение, мВ      | 0,52500            | ±0,1                                                       |

<sup>\*\*</sup> - в качестве токового шунта должен использоваться резистор точностью не хуже 0.05%

| Количество универсальных входов                                                               | 2                                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Время измерения (смены показаний)                                                             | <ul> <li>для термопар, сигналов тока и напряжения 1,54 сек</li> <li>для термосопротивлений (настраивается пользователем): 3,012 сек</li> </ul> |  |
| Задержка на включение/выключение                                                              | 1100 сек (настраивается пользователем)                                                                                                         |  |
| Количество выходов                                                                            | 2                                                                                                                                              |  |
| Макс. ток нагрузки и кол-во коммутационных циклов для выходных устройств                      | <ul> <li>электромагнитное реле: 7 A, 220 B</li> <li>симистор: 1 A, 220 B</li> <li>транзистор (открытый коллектор): 50 мА, 5 В</li> </ul>       |  |
| Диапазон отображения измеренных величин                                                       | <ul> <li>с разрешающей способностью 1,0: -9999+9999</li> <li>с разрешающей способностью 0,1:-99,9+999,9</li> </ul>                             |  |
| Диапазон настройки сдвига зависимости входной величины                                        | -500,0500,0 единиц измеряемой величины с шагом 0,1                                                                                             |  |
| Диапазон настройки наклона зависимости входной величины                                       | 0,500 2,000 с шагом 0,001 (множитель)                                                                                                          |  |
| Диапазон уставки гистерезиса                                                                  | 0100 единиц измеряемой величины с шагом 1                                                                                                      |  |
| Выбор или автоматическая настройка измерительного тока через термометры сопротивления из ряда | 0,5; 5,0 MA                                                                                                                                    |  |
| Возможность отключения «холодного спая» для работы с<br>дифференциальными термопарами         | +                                                                                                                                              |  |
| Время установления рабочего режима, исчисляемое с момента включения терморегулятора           | не более 3 сек                                                                                                                                 |  |
| Напряжение питания                                                                            | (220±22)B/ (50±1) Гц                                                                                                                           |  |
| Габаритные размеры                                                                            | не более 96х48х110 мм                                                                                                                          |  |
| Macca                                                                                         | не более 0,5 кг                                                                                                                                |  |

## 3.8 Терморегулятор ПУСК-1 с таймером и функцией контроля влажности для камеры сушки

Терморегулятор ПУСК-1 предназначен для управления процессом сушки с контролем температуры, относительной влажности воздуха и длительности процесса сушки. Терморегулятор может быть использован для комплектования камер сушки одежды, температурных камер сушки древесины, травяных сборов, зерна и т.д..

- Автоматическое окончание процесса сушки по времени или относительной влажности воздуха
- Понятный пользовательский интерфейс
- Простая установка и подключение
- Один специализированный прибор заменяет три стандартных
- Два исполнения:
  - 1. Пуск-1-1 со встроенным датчиком температуры и влажности
  - 2. Пуск-1-2 с выносным датчиком температуры и влажности



Терморегулятор осуществляет попеременное включение нагревателя и вентилятора. При достижении в камере заданного значения температуры нагреватель отключается, а вентилятор включается. При снижении температуры в камере на величину гистерезиса выключается вентилятор и включается нагреватель. Процесс сушки заканчивается либо при достижении заданного (установленного) времени сушки, либо при достижении влажности в камере сушки установленного значения.

Терморегулятор выполнен в пластмассовом корпусе щитового монтажа.

Прорежте на панели камеры отверстия для установки прибора, подключите к нему питание, нагреватель, вентилятор. Установите прибор. Ваша камера сушки готова к работе!





| Напряжение питания частотой 50 Гц                                                              | (220±22) B          |
|------------------------------------------------------------------------------------------------|---------------------|
| Диапазон контроля температуры с погрешностью $\pm 1,0$ °C; разрешением $-$ 1,0 °C $^*$         | 0 +80 °C            |
| Диапазон задания уставки по температуре*                                                       | +5 60 °C (+5 80 °C) |
| Диапазон задания гистерезиса (но не более температуры уставки)                                 | +1 60 °C            |
| Диапазон контроля относительной влажности с: погрешностью $\pm 3,0\%$ ; разрешением $-1,0\%$ * | 0 80 %              |
| Диапазон задания уставки по относительной влажности *                                          | 5 80 %              |
| Диапазон задания уставки времени с разрешением 1 мин                                           | 0 24 час            |
| Суточный уход часов, не более                                                                  | ±5 мин              |
| Мощность нагрузки, не более                                                                    | 1,5 кВт             |
| Средний срок службы                                                                            | 5 лет               |
| Габаритные размеры корпуса, не более, мм                                                       | 95,0x95,0x70,0      |
| Установочные размеры, мм                                                                       | 84*84               |
| Масса, не более                                                                                | 0,50 кг             |

<sup>\* -</sup> могут быть изменены

## 4.1 Реле времени РВ-01М многофункциональное

Реле времени РВ-01М может использоваться в качестве формирователя периодической последовательности импульсов или устройства задержки при управлении технологическими процессами.

- Заменяет практически, все выпускаемые в настоящее время одноканальные реле
- Двухразрядный светодиодный индикатор
- 8 встроенных функций
- Диапазон задания выдержки времени реле: от 0,1 сек. до 99 ч.
- Задание уставки потенциометром с контролем значения на цифровом индикаторе
- Удобный корпус с креплением на DIN-рейку
- Расширенный диапазон температуры эксплуатации -25...+50°C
- Два исполнения:
  - 1. РВ-01М.220 напряжение питания 150...240 В переменного тока
  - 2. PB-01M.24 напряжение питания 9...30 B постоянного тока



#### Описание прибора

Реле времени PB-01M представляет собой программируемое автоматическое устройство и предназначено для коммутации электрических цепей через контакты выходного реле, после отработки предварительно установленной выдержки времени, по заданному алгоритму работы, с индикацией обратного отсчета заданного времени.

#### Алгоритмы работы

- поданном напряжении питания.
- 2. Старт-Стоп. Включение и задержка на выключение выходного реле происходит при замыкании управляющего контакта. Повторное замыкание управляющего контакта прерывает отсчет выдержки времени, если происходит до истечения установленной выдержки.
- 3. Симметричная задержка на включение и 6. Старт-Пауза. Включение и задержка на выключение.
- 1. Задержка на включение при постоянно 4. Формирователь импульсов. При замыкании управляющего контакта, выходное реле активируется, и начинается отсчет выдержки времени на выключение. Размыкание управляющего контакта до истечения установленной выдержки прерывает отсчет и отключает выходное реле.
  - 5. Задержка на выключение при постоянно поданном напряжении питания.
  - выключение выходного реле происходит при замыкании управляющего контакта

Повторное замыкание управляющего контакта останавливает (запоминает) отсчет выдержки времени, если происходит до истечения установленной выдержки. Последующее замыкание управляющего контакта продолжает отсчет выдержки времени.

- 7. Генератор симметричных импульсов, начиная с паузы, при постоянно поданном напряжении питания
- 8. Формирователь импульсов.

| Рункции                                                                        | <ul> <li>наличие кнопки ручного запуска</li> <li>наличие индикации включения реле</li> </ul>                                        |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Диапазон напряжения питания                                                    | <b>PB-01M.220:</b> 150240 В перемен. тока, (50±1) ГЦ <b>PB-01M.24:</b> 930 В постоянного тока                                       |
| Пределы допускаемой погрешности отсчета выдержки времени                       | не более ±0,2%                                                                                                                      |
| Температурный дрейф                                                            | не более 0,01%/°C                                                                                                                   |
| Количество задаваемых выдержек времени                                         | 1                                                                                                                                   |
| Номинальный ток нагрузки, коммутируемый реле времени, при<br>активной нагрузке | <ul> <li>при напряжении переменного тока 240 В не более 7 А</li> <li>при напряжении постоянного тока 24 В не более 10 А</li> </ul>  |
| Минимальный ток нагрузки                                                       | 10 мА при напряжении 5 В                                                                                                            |
| Программируемый диапазон задания выдержки времени                              | • 0,1 сек ÷ 9,9 сек с шагом 0,1 сек<br>• 1 сек ÷ 99 сек с шагом 1 сек<br>• 1 мин ÷ 99 мин с шагом 1 мин<br>• 1 ч ÷ 99 ч с шагом 1 ч |
| Габаритные размеры корпуса / Масса                                             | 37х93х59 мм / не более 0,5 кг                                                                                                       |

## 4.2 Реле времени ТЕМП-1М

Реле времени ТЕМП-1М представляет собой одноканальный программируемый автомат и предназначено для автоматического замыкания-размыкания до четырех внешних цепей с индикацией времени отсчета и возможностью звуковой сигнализации. Прибор может использоваться в качестве таймера времени, формирователя периодической последовательности или устройства включения-выключения для устройств управления при выполнении технологических процессов.

- 4 режима работы
- 2 входа для внешних сигналов управления
- Простая настройка
- Возможность подключения к реле времени двух внешних кнопок: кнопки «пуск/стоп», и кнопки «пауза»
- Сохранение текущих значений параметров программы при отключении питания
- Возможность установки до 4-х уставок по времени от 0,01 сек. до 99 ч 59 мин общих для всех каналов управления
- Два исполнения:
  - 1. Темп-1M-2 два выходных реле
  - 2. Темп-1М-4 четыре выходных реле



#### Описание прибора

Период работы реле времени разбит на 4 интервала с произвольной длительностью (диапазон задания длительности одинаковый для всех интервалов и выбирается из ряда:  $0.01 \, \text{сек} \div 99.99 \, \text{сек}; \, 0.1 \, \text{сеk} \div 99.99 \, \text{сеk}; \, 1 \, \text{сеk} \div 99$ 

мин 59 сек или 1 мин  $\div$  99 ч 59 мин). На каждом из этих интервалов пользователь может задавать комбинацию состояния контактов реле (замкнуто или разомкнуто). Введение нулевых значений длительности интервала соответ-

ствует его пропуску, в этом случае состояния реле на данном интервале не имеют значения.

#### Режимы работы

- **1. ЦИКЛИЧЕСКИЙ** цикл отсчета повторяется бесконечно.
- 2. ОДНОКРАТНЫЙ цикл отрабатывается один раз, после чего все реле размыкаются. Повторный запуск цикла происходит при нажатии кнопки ВВОД или при замыкании соответствующих контактов на клеммнике прибора.
- 3. ОДНОКРАТНЫЙ (АНАЛОГИЧНО ПРЕДЫ-ДУЩЕМУ) СО ЗВУКОВЫМ СИГНАЛОМ ДЛИТЕЛЬНОСТЬЮ 10 СЕКУНД ПО ОКОНЧА-НИИ ОТСЧЕТА. Во время звучания все реле разомкнуты, все кнопки неактивны, а индикаторы мигают в такт со звуковым сигналом. Повторный запуск (при нажатии кнопки ВВОД или при замыкании соответствующих контактов на клеммнике прибора) в этом режиме возможен только по окончании звукового сигнала
- 4. ОДНОКРАТНЫЙ С ПОДТВЕРЖДЕНИЕМ ЗАПУСКА КАЖДОГО ИНТЕРВАЛА ВНУТРИ ОДНОГО ЦИКЛА. По окончании отсчета каждого из четырех интервалов все реле размыкаются. Отсчет следующего интервала и повтор цикла после отработки последнего интервала начинаются при нажатии кнопки ВВОД или при замыкании соответствующих контактов на клеммнике прибора.

| Напряжение питания                                                      | (220±22) B                                                                                                                        |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Номинальный коммутируемый ток                                           | 5,0 A, cosφ>0,4                                                                                                                   |
| Количество коммутируемых внешних цепей (зависит от модификации прибора) | 2, 4                                                                                                                              |
| Диапазон задания временных интервалов                                   | <ul> <li>0,01 сек ÷ 99,99 сек</li> <li>0,1 сек ÷ 999,9 сек</li> <li>1 сек ÷ 99 мин 59 сек</li> <li>1 мин ÷ 99 ч 59 мин</li> </ul> |
| Количество задаваемых временных интервалов                              | до 4-х                                                                                                                            |
| Точность выдержки уставок                                               | Не более 0,1 %                                                                                                                    |
| Количество входов для внешних сигналов управления                       | 2                                                                                                                                 |
| Длительность внешних сигналов управления                                | не менее 50 мсек                                                                                                                  |
| Мощность звукового сигнала                                              | не более 0,1 Вт                                                                                                                   |
| Длительность звукового сигнала                                          | не более 10 сек                                                                                                                   |
| Температура эксплуатации                                                | +5+55°C                                                                                                                           |
| Габаритные размеры корпуса / Масса                                      | 96х50х100 мм / не более 0,40 кг                                                                                                   |

## 4.3 Реле времени ТЕМП-12

### (для управления до 12 внешних цепей)

Реле времени применяется в пищевой промышленности, сельском и коммунальном хозяйствах, в машиностроении, на железнодорожном транспорте и других отраслях промышленности.

- 12 каналов управления
- Однократный и циклический режимы работы
- Возможность подключения к реле внешней кнопки «пуск/стоп»
- Диапазон задания временных интервалов от 0,01 сек до 99 ч 59 мин
- Простое управление
- Сохранение текущих значений параметров программы при отключении питания
- Защита параметров от несанкционированного доступа



#### Описание прибора

Реле времени ТЕМП-12 представляет собой программируемый автомат с общим запуском и предназначено для автоматического замыкания - размыкания до 12 внешних цепей с индикацией времени.

Возможно подключение внешней кнопки течение времени, устанавливаемом (задапуск/стоп, которая дублирует кнопку ваемом) пользователем. Все каналы реле ВВОД на передней панели. В качестве внешней кнопки могут быть использованы концевые выключатели, контакты реле и другие «сухие» контакты, а также ями уставок Твкл и Твыкл для каждого

транзисторные N-P-N ключи, включенные Время работы всех каналов ограничивапо схеме открытый коллектор.

Принцип действия реле времени заключается в автоматическом включении и выключении исполнительных устройств в времени независимо друг от друга включаются и выключаются по одному разу за нужно указывать «Темп-12С». цикл в моменты, определяемые значениканала.

ется значением уставки Тцикл - моментом, по достижению которого таймер переходит в «Режим СТОП», независимо от значений уставок каналов.

Выпускается также модификация реле времени Темп-12 с функцией «Пауза». В этом случае при заказе реле времени

| Напряжение питания                     | 198242 B                                                                                                    |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Номинальный коммутируемый ток          | 5 A cos φ > 0,6                                                                                             |
| Количество коммутируемых внешних цепей | 12                                                                                                          |
| Режим работы                           | однократный, непрерывный                                                                                    |
| Диапазон задания временных интервалов  | <ul> <li>0,01 сек. + 99,99 сек</li> <li>1 сек. + 99 мин. 59 сек.</li> <li>1 мин. + 99 ч. 59 мин.</li> </ul> |
| Количество уставок на канал            | 2                                                                                                           |
| Общее количество уставок               | 25 (24 + t <sub>цинп</sub> )                                                                                |
| Точность выдержки уставок              | не более ± 0,1%                                                                                             |
| Температура эксплуатации               | +5 +55 °C                                                                                                   |
| Габаритные размеры корпуса Щ2          | 96х96х180 мм                                                                                                |
| Масса                                  | не более 0,5 кг                                                                                             |

## 4.4 Таймер реального времени ТРВ-02

Таймер TPB-02 представляет собой программируемое автоматическое устройство для ежесуточного замыкания и размыкания до двух внешних цепей в соответствии с заданными уставками по времени и уросвням освещенности и может применяться для управления внутренним и наружным освещением, а также может использоваться в качестве формирователя периодической последовательности импульсов или устройства задержки при управлении технологическими процессами.

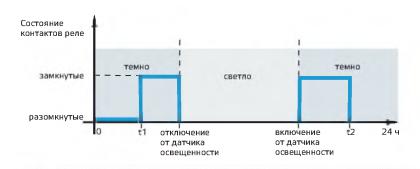
- Сохранение заданных параметров и хода времени при отключении питания
- Расширенный диапазон по температуре эксплуатации
- Удобство настройки и эксплуатации

#### Описание прибора

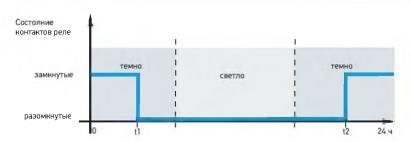
Таймер имеет два независимых канала управления. Для каждого канала можно установить время включения и отключения своего выходного электромагнитного реле. В таймере используются реле с перекидными контактами, соответственно можно использовать либо нормально-замкнутые, либо нормально-разомкнутые, Силовые контакты двух реле могут быть соединены последовательно. В этом случае получаем прибор с одним каналом и четырьмя временными уставками.

Таймер имеет возможность управления реле в зависимости от уровня освещенности. Порог срабатывания, в зависимости от уровня освещенности, программируется в переделах от 1 до 50 относительных единиц: 1% — освещенность минимальная, 50% — освещенность максимальная.

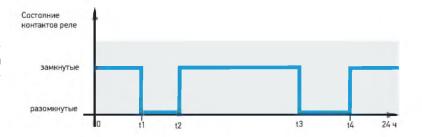
Если временные уставки какого-либо из каналов (время включения и выключения) равны, данный канал работает только от датчика освещенности, как обычное фотореле. Если временные уставки какого-либо из каналов (время включения и выключения) имеют разные значения, то после включения данного канала от датчика освещенности отключается (во избежание ложных срабатываний от посторонней засветки) до тех пор, пока не отработают временные уставки.







| Напряжение питания                                          | 198242 B                                              |
|-------------------------------------------------------------|-------------------------------------------------------|
| Количество каналов для подключения внешних цепей управления | 2                                                     |
| Режим работы                                                | циклический                                           |
| Период цикла                                                | 24 ч.                                                 |
| Время установления рабочего режима                          | не более 3 сек.                                       |
| Пределы допускаемого отклонения часов реального времени     | не более ± 2 мин. в месяц                             |
| Диапазон коррекции суточного ухода часов                    | в переделах ± 20 сек.                                 |
| Кол-во уставок на 1 канал (независимых для каждого канала)  | 2                                                     |
| Диапазон задания уставок                                    | от 1 мин. до 23 ч. 59 мин. с дитскрет. отсчета 1 мин. |
| Номинальный коммутируемый ток                               | $5 \text{ A cos } \phi > 0,6$                         |
| Продолжительность работы таймера от литиевой батареи        | не менее 500 суток                                    |
| Температура эксплуатации                                    | -40 +50 °C                                            |
| Габаритные размеры корпуса                                  | 72х88х54 мм                                           |
| Macca                                                       | не более 0,25 кг                                      |
|                                                             |                                                       |

#### Алгоритмы работы таймера реального времени ТРВ-02


- 1. Работа таймера (состояние одного из реле) с датчиком освещенности, использование нормально-разомкнутых контактов реле
- t1 уставка на включение (включение освещения - утро)
- t2 уставка на отключение (выключение освещения - ночь)



- 2. Работа таймера (состояние одного из реле) при отключении датчика освещенности, использование нормально-замкнутых контактов реле
- t1 уставка на включение (включение освещения - утро)
- t2 уставка на отключение (выключение освещения - ночь)



- 3. Работа таймера с последовательным соединением двух выходных реле (без датчика освещенности), использование нормально-замкнутых контактов реле
- t1 уставка на включение I реле
- t2 уставка на отключение I реле
- t3 уставка на включение II реле
- t4 уставка на отключение II реле



4. Работа таймера (состояние, например 1 реле) с датчиком освещенности в режиме фотореле (t1 = t2 = 0), использование нормально-замкнутых контактов реле



## 5.1 Счетчик импульсов СИ2-4

Счетчик импульсов СИ2-4 предназначен для цифрового отсчета объектов или единиц (импульсов, ходов и т.п.), поступающих от концевых выключателей контактных, оптических, индуктивных, емкостных и др. датчиков и может применяться в технологических производственных процессах в приборостроении, пищевой промышленности, машиностроении, в том числе для подсчета продукции.

- Прямой, обратный или реверсивный счет
- Функция масштабирования
- Наличие канала управления
- Защита параметров от несанкционированного доступа

#### Описание прибора

Счетчик импульсов СИ2-4 используется для отсчета импульсов, поступающих от контактных или бесконтактных датчиков. Благодаря наличию электромагнитного реле и функции масштабирования счетчик импульсов СИ2-4 может также применяться в качестве расходомера или дозатора.



| Номинальный коммутируемый ток                    | 5 A, cos φ > 0,6              |
|--------------------------------------------------|-------------------------------|
| Длительность счетного импульса                   | не менее 0,5 мсек             |
| Длительность паузы между импульсами              | не менее 0,5 мсек             |
| Частота следования импульсов                     | не более 1 кГц                |
| Режим работы                                     | прямой, обратный, реверсивный |
| Диапазон задания уставок                         | -999 ÷ 9999                   |
| Диапазон коэффициента умножения (масштабированя) | 0,0019,999                    |
| Диапазон задания антидребезга                    | 0,599 мсек                    |
| Температура эксплуатации                         | +5+55 °C                      |
| Напряжение питания                               | 198242 B                      |
| Габаритные размеры корпуса                       | 96х48х100 мм                  |
| Macca                                            | не более 0,40 кг              |

## 5.2 Переключатели оптические ОПД

Оптические переключатели предназначены для регистрации различных объектов и применяются в машиностроении, автомобилестроении, пищевой промышленности и т.д.

- Устойчивость к вибрационным нагрузкам
- Устойчивость к электромагнитным помехам
- Устойчивость к внешнему освещению (в том числе от люминесцентных ламп)
- Два исполнения:
  - 1. Переключатель оптический совмещенного типа ОПД-02М
  - 2. Переключатель оптический разнесенного типа ОПД-03M



#### Описание прибора

Переключатель ОПД-02М содержит излуи срабатывает на свет, отраженный при появлении объекта в активной области в активной области переключателя (в луче), переключателя (в луче).

Переключатель ОПД-03М состоит из двух частей: излучателя и детектора и может

использоваться как диффузионный перетак и как разнесенный — срабатывающий на прерывание луча между излучателем и детектором.

На переключателе имеются : регулирочатель и фотоприемник в одном корпусе ключатель – срабатывающий на свет, вочный резистор для настройки порога отраженный от объекта при появлении его чувствительности и светодиодный индикатор срабатывания красного цвета.

| Тип датчика                                      | 0ПД-02М                | опд-озм                                                 |
|--------------------------------------------------|------------------------|---------------------------------------------------------|
| Максимальное расстояние устойчивой работы        | 0,5 м — отражение луча | • 2,0 м — прохождение луча<br>• 0,25 м — отражение луча |
| Длина волны используемого излучения              | 950 нм                 | 950 нм                                                  |
| Диаграмма направленности излучения по уровню 0,9 | -                      | ±0,5                                                    |
| Диаграмма направленности излучения по уровню 0,9 | 830 B                  | 830 B                                                   |
| Размер резьбы                                    | M 20x1,5               | M 20x1,5                                                |
| Температура эксплуатации                         | +5+55 °C               | +5+55 °C                                                |
| Масса                                            | не более 0,30 кг       | не более 0,40 кг                                        |

## 6.1 Термохрон-Рэлсиб

#### Универсальная система температурного мониторинга

Система Термохрон-Рэлсиб может применяться для регистрации и контроля температуры в любых сферах деятельности, например: пищевой и фармацевтическщи промышленности; медицине; строительстве и производстве стройматериалов; жилищно—коммунальном хозяйстве; испытании, хранении и транспортировании нефтепродуктов; температурном мониторинге движущихся, вибрирующих и вращающихся механизмов; метеорологии; научных исследованих.

- Регистрация температурных значений через равные заданные пользователем промежутки времени
- Хранение информации в собственной энергонезависимой памяти регистратора
- Литиевый элемент питания со сроком эксплуатации до 8 лет
- Миниатюрный герметичный корпус из нержавеющей стали
- Ударо- и виброустойчивость
- Устойчивость к магнитным и электростатическим полям
- Простое и удобное программное обеспечение
- Вывод данных в виде таблицы, гистограммы, графика



Универсальная система температурного мониторинга «ТЕРМОХРОН—РЭЛСИБ» предназначена для регистрации температуры во времени с последующей обработкой полученной информации на персональном компьютере. Система состоит из измерителей-регистраторов DS1921G-F5 и адаптера для считывания данных на ПК. Поставляется на диске. За счет малых габаритов и полной автономности измеритель—регистратор может быть установлен в труднодоступных местах, там, где применение других средств контроля невозможно.





## 6.2.1 Автономные регистраторы EClerk-USB в пластиковом мини корпусе

Автономные регистраторы (логгеры) EClerk-USB применяются в научных исследованиях и промышленном производстве, при транспортировке скоропортящихся продуктов и материалов, для контроля работы систем отопления и кондиционирования воздуха, на складах, хранилищах, в библиотеках, архивах и т.д.

- Высокая точность
- Низкое энергопотребление
- Большой объем внутренней
- Эргономичный корпус
- Современный дизайн
- Понятный пользовательский интерфейс

#### Описание прибора

Автономные регистраторы (логгеры) – это ваши личные электронные секретари (electronic clerk), которые проведут измерения необходимых параметров, запишут данные во внутреннюю память, а позже, при помощи программы обработки, представят данные измерений на компьютере в удобном для вас виде.

Регистраторы (логгеры) работают как автономно, используя недорогой элемент питания CR 2032, так и с компьютером в режиме on-line, питаясь от USB-порта.

Объем памяти логгера: 80000 значений

Период опроса: 1 с.. 24 ч

Тип записи: циклический, до заполнения

Количество каналов: 1 или 2

Срок службы без смены элемента питания при периоде

регистрации 1 мин: 1 год.

Температура эксплуатации: -20...+70 °С



| Наименование<br>регистратора | Количество<br>каналов | Измеряемый параметр                                                                     | Диапазон измерения<br>и точность                                            |
|------------------------------|-----------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| EClerk-USB-T                 | 1                     | Температура (встроенный сенсор)                                                         | -20+70 °C ±0,5 °C                                                           |
| EClerk-USB-RHT               | 2                     | Температура и отн. влажность (встроенный сенсор)                                        | -20+70 °C ±1,0 °С (±1,5 °С; ±2,0 °С)<br>0100 % отн ± 2,0 % (±3,0 %; ±4,5 %) |
| EClerk-USB-K                 | 1                     | Температура: термопара типа XA(K) — внешнее подключение через клеммы                    | -50+1200 °C ± 0,5 %                                                         |
| EClerk-USB-2Pt               | 2                     | Температура: термосопротивление Pt1000 — внешнее двухпроводное подключение через клеммы | -50+200 °C ±0,5 °C                                                          |
| EClerk-USB-2mV               | 2                     | Напряжение – внешнее подключение через клеммы                                           | 050 mV ±0,25 %                                                              |
| EClerk-USB-2U                | 2                     | Напряжение – внешнее подключение через клеммы                                           | 010 B ±0,25 %                                                               |

## 6.2.2 Автономные регистраторы EClerk-USB-x-Kl промышленные в герметичном корпусе Kl

Автономные промышленные регистраторы в корпусе Кl применяются для контроля температуры жидких и сыпучих пищевых и непищевых сред, контроля температуры в трубах и емкостях. EClerk-USB-RHT-Kl применяется для контроля и регистрации температуры и отн. влажности в производственных и складских помещениях, в воздуховодах систем вентиляции и кондиционирования, в камерах тепла-холода, сушильных шкафах. EClerk-USB-PT-Kl применяется для контроля и регистрации избыточного давления и температуры жидкостей.



EClerk-USB-PT-KI

- Высокая точность
- Герметичный корпус
- Широкий диапазон температуры эксплуатации
- Наличие юстировки пользователя
- Низкое энергопотребление
- Понятный пользовательский интерфейс

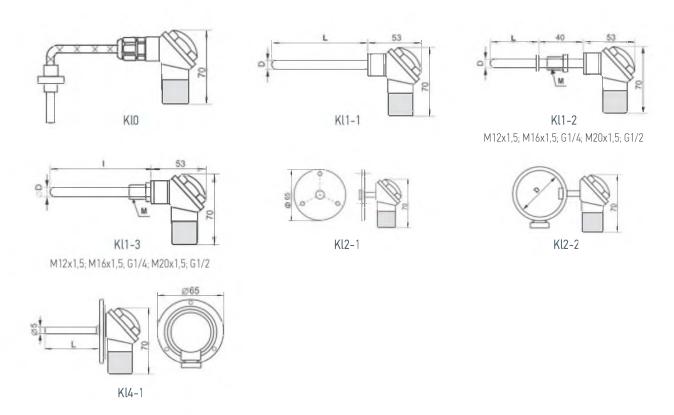
#### Описание прибора

Электронный блок регистратора с батарейным отсеком находится в герметичной клеммной головке. Клеммная головка имеет два входа: один для подключения к USB-порту компьютера, второй для подключения зонда с чувствительным элементом. При помощи программы EClerk пользователь может самостоятельно осуществить юстировку регистратора. Для смены элемента питания или изменения режима работы регистратора достаточно открутить крышку клеммной головки. Регистратор выполнен в различных конструктивных исполнениях для разных областей применения.

Объем памяти логгера: 80000 значений

Период опроса: 1 с...24 ч

Тип записи: циклический, до заполнения


Количество каналов: 1 или 2

**Срок службы без смены элемента питания при периоде регистрации 1 мин:** 3-5 лет

**Температура эксплуатации:** -40...+70°С (кратковременно -50...+80°С)



#### Конструктивные исполнения



| Наименование регистратора | Количество<br>каналов | Измеряемый параметр                                                                             | Диапазон измерения и точность                               |
|---------------------------|-----------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| EClerk-USB-2Pt-Kl         | 1,2                   | Температура (встроенный сенсор, KLO для использования с внешним датчиком)                       | -50+200°C ± 0,5°C                                           |
| EClerk-USB-RHT-Kl         | 2                     | Температура и отн. влажность (встроенный сенсор,<br>Kl0 для использования с выносным датчиком)  | -40+100°C ± 1,0°C<br>0100% отн ± 2,0%                       |
| EClerk-USB-K-Kl           | 1                     | Температура: термопара типа ХА(К) (встроенный сенсор, Кl0 для использования с внешним датчиком) | -50+800°C ± (0,5+0,0025T)°C<br>-50+1250°C ± (0,5+0,0025T)°C |
| EClerk-USB-PT-Kl          | 2                     | Избыточное давление и температура.                                                              | 00,6 или 02,5Mna ± 0,5%<br>-20+110°C ± 0,5°C                |

|                    | Время жизни элемента питания при температуре |          | тания при температуре |
|--------------------|----------------------------------------------|----------|-----------------------|
| Период регистрации | Время заполнения памяти                      | +23 °C   | -40 °C                |
| 1 c                | 11,5 часов                                   | 70 суток | 30 суток              |
| 10 c               | 4,8 суток                                    | 1,5 года | 0,5 года              |
| 1 мин              | 29 суток                                     | 5 лет    | 3 года                |
| 1 час              | 5 лет                                        | 8 лет    | 4 года                |

## 6.2.3 Автономные регистраторы EClerk-USB-X-G промышленные в герметичном корпусе G

Автономные регистраторы применяются в научных исследованиях, в пищевой промышленности, сельском и коммунальном хозяйствах и машиностроении, железнодорожном транспорте и в других отраслях промышленности.

#### Описание прибора

- Высокая точность
- Низкое энергопотребление
- Широкий диапазон измеряемых параметров
- Герметичный корпус
- Широкий диапазон температуры эксплуатации
- Наличие юстировки пользователя

Автономные регистраторы EClerk-USB-X-G в герметичном корпусе предназначены для регистрации параметров с внешних датчиков.

При помощи программы EClerk пользователь может самостоятельно осуществить юстировку регистратора.

Объем памяти логгера: 80000 значений

Период опроса: от 1 сек. до 24 часов.

**Температура эксплуатации:** -40...+70°С, кратковременно (не более 1 часа): -50...+80°С.



| Наименование регистратора | Количество<br>каналов | Измеряемый параметр | Диапазон измерения и точность                                                      |
|---------------------------|-----------------------|---------------------|------------------------------------------------------------------------------------|
| EClerk-USB-2Pt-G          | 2                     | Температура, Pt1000 | -50+200°C ± 0,5°C                                                                  |
| EClerk-USB-IU-G           | 1                     | Ток и напряжение    | -100+100MB ± 1,0%<br>010B ± 0,05%<br>05MA ± 0,05%<br>020MA ± 0,05%<br>420MA ± 0,1% |
| EClerk-USB-2mV-G          | 2                     | Напряжение          | 050мB ± 0,25%                                                                      |

## 6.2.4 Программное обеспечение для работы с регистраторами EClerk-USB

#### Программа конфигурирования и работы с данными EClerk v.1

Программа предназначена для настройки параметров и работы с данными измерений автономных USB-регистраторов EClerk-USB. Программа имеет интуитивно-понятный пользовательский интерфейс.

#### Программа EClerk позволяет:

- осуществить начальную настройку регистратора: задать текущее время, период опроса, время начала опроса, режим записи (циклический или разовый до заполнения памяти), задать
- представлять данные в виде таблицы или графика с возможностью масштабирования, задавать уставки, копировать данные, экспортировать их в текстовые или Excel-файлы, распечатать готовый Протокол измерений.

#### ПО EClerk содержит:

- 1. Программу конфигурирования и работы с данными EClerk v1.8 (01.07.2014)
- 2. Программу просмотрщик данных EClerk Viewer v1.3 (01.04.2014)
- 3. Статьи по применению автономных регистраторов
- 4. Руководства по эксплуатации

#### Внимание!

Для осуществления заводской юстировки, изменения пароля для входа в юстировку Пользователя необходим текстовый файл-пароль. Данный текстовый файл необходимо поместить в ту же папку, где находится сама программа EClerk. В этом случае при открытии программы EClerk в строке меню появится дополнительная кнопка «Сервис». Текстовый файл высылается после получения запроса на официальном бланке организации на эл. agpec tech@relsib.com

#### Программа-просмотрщик данных EClerk Viewer

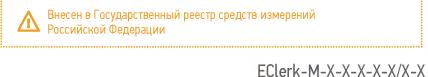
Программа предназначена для анализа данных с нескольких автономных USB-регистраторов EClerk-USB и беспроводных измерителей-регистраторов WR-1-16-USB.

Графики в программе представлены в полноэкранном формате. Имеется возможность изменения цветов графиков, масштабирования одновременного представления на графике данных в различных физических единицах при помощи автоматического расчета масштабных коэффициентов.



Общие данные




Представление данных в виде таблицы



Представление данных в виде графика

## 6.3 Измерители-регистраторы переносные EClerk-M

Измерители-регистраторы EClerk-М применяются в научных исследованиях и промышленном производстве, при транспортировке скоропортящихся продуктов и материалов, для контроля работы систем отопления и кондиционирования воздуха, на складах, хранилищах, в библиотеках, архивах и т.д.



- большой объем памяти;
- высокая точность;
- современный эргономичный корпус;
- расширенный диапазон температуры эксплуатации;
- и работы с данными;



#### Описание прибора

Измерители-регистраторы EClerk-M подразделяются в зависимости от используемого чувствительного элемента и, соответственно, измеряемых и регистрируемых параметров.

В зависимости от наличия или отсутствия светодиодного индикатора прибор выполняет функцию регистратора (нет индикатора) или измерителя-регистратора (есть индикатор).

В приборах с ЧЭ температуры (T) и температуры/относительной влажности (RHT) чувствительный элемент встроен в прибор и находится на печатной плате под съемным колпачком, имеющим сквозные отверстия для обеспечения воздухообмена с окружающей средой (исп. G1).

В приборах с ЧЭ К (термопара XA(K)) и 2Pt (два платиновых элемента Pt1000) чувствительные элементы находятся в зонде (исп. G2) или подключаются к прибору с помощью безвинтовых клемм (исп. G3).

Все приборы, кроме измерителя-регистратора с типом чувствительного элемента Т имеют два канала измерения:

- RHT- измерение температуры и относительной влажности воздуха,
- 2Pt измерение температуры в двух точках,
- К измерение температуры рабочего спая (контролируемой среды) и холодного спая (корпуса прибора).

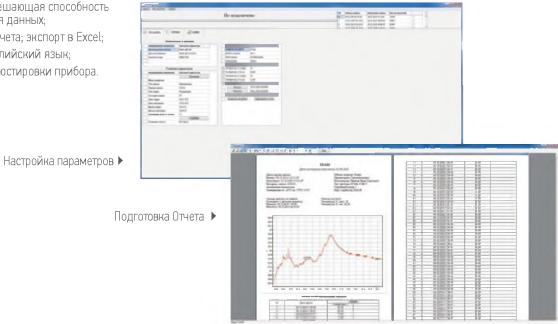
#### Приборы имеют три исполнения по способу подключения чувствительного элемента:



<sup>\* -</sup> Прибор в исполнении G3 поставляется без чувствительных элементов, в данном случае они могут заказываться отдельно.

| Объем памяти (количество записываемых значений):     | до 520 тыс. значений                           |
|------------------------------------------------------|------------------------------------------------|
| Тип записи данных                                    | циклический, до заполнения                     |
| Тип старта                                           | по времени, по кнопке                          |
| Период регистрации                                   | 1 с 24 ч                                       |
| Количество интервалов записи (сессий)                | до 21                                          |
| Суточная точность хода внутреннего таймера           | ±1 c                                           |
| Диапазон температуры окружающей среды (эксплуатации) | - 40 + 70 °C                                   |
| Питание                                              | от элемента 1/2AA напряжением 3,6 В или от USB |

| П                  |                         | Время жизни элемента питания при температуре** |             |  |
|--------------------|-------------------------|------------------------------------------------|-------------|--|
| Период регистрации | Время заполнения памяти | плюс 23 °C                                     | минус 40 °C |  |
| 1 c                | 70 час.                 | 130 сут.                                       | 110 сут.    |  |
| 10 c               | 30 сут.                 | 1,7 года                                       | 1,5 года    |  |
| 1 мин              | 180 сут.                | 2,7 года                                       | 2,4 года    |  |
| 1 час              | 30 лет                  | 3,1 года                                       | 2,7 года    |  |


<sup>\*\* -</sup> При работе прибора только в режиме регистратора

|    | Памбаа         | Измеряемый                        | 1                                                          | Абсолютная погрешность                                                    |                                        | Разрешающая способность |      |
|----|----------------|-----------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|-------------------------|------|
| Nō | Прибор<br>с ЧЭ | параметр<br>и ед. изм.            | Диапазон измерения                                         | Исп. 1                                                                    | Исп.2                                  | Индикатора<br>прибора   | ПО   |
| 1  | Т              | Температура, °С                   | -40+70                                                     | ± (0,5+0,003T)                                                            |                                        | 0,1                     | 0,06 |
| 2  | RHT            | Температура, °С                   | -40+70                                                     | - 1,0 - 1 10 7                                                            | ± 1,8 °C (-20 +70)<br>± 2,3 °C (-4020) | 0,1                     | 0,04 |
| Z  | KHI            | Отн. влажность, %                 | 098                                                        |                                                                           | ± 4,5% (10 90)                         | 0,1                     | 0,05 |
|    |                | Температура, °С                   | -50+200                                                    | ± (0,2 + 0,001T)                                                          |                                        | 0,1                     | 0,03 |
| 3  | 2Pt            | Температура, °С                   | -40+70 (ЧЭ в корпусе);<br>-50+200 (ЧЭ в зонде)             | Справочный параметр                                                       |                                        | 0,1                     | 0,03 |
| 4  | K              | Температура<br>рабочий спай, °C   | -100+800 (ЧЭ в зонде);<br>-100+1200 (внешняя<br>термопара) | ± (1,5+0,004T) (ЧЭ в зонде);<br>± (0,5+0,002T) (без термопреобразователя) |                                        | 1,0                     | 0,06 |
|    |                | Температура,<br>холодный спай, °С | -40+70                                                     | Справочный параметр                                                       |                                        | 0,1                     | 0,06 |

#### Программа EClerk v.2.0 конфигурирования автономных измерителей-регистраторов EClerk-М и работы с данными

- Настройка (конфигурирование) прибора;
- Работа с файлами данных;
- Работа в режиме Online (USB-измеритель);
- Фильтрация по максимальному и минимальному значению, по времени;
- Представление данных в виде таблицы и графика;
- Высокая разрешающая способность представления данных;
- Подготовка Отчета; экспорт в Excel;
- Русский и английский язык;
- Возможность юстировки прибора.

Программа-конфигуратор разворачивается на весь экран ПК. Графика максимально функциональна. Мышкой можно сдвигать кривую, уменьшать-увеличивать масштаб, выделять область и разворачивать ее на весь экран. ПО предоставляет возможность подготовки и распечатки качественного Отчета. Установщик содержит в себе Руководства по эксплуатации на все приборы серии EClerk-M, а также полезные статьи по применению автономных регистраторов. В меню программы в разделе Информация содержится краткое руководство о работе с программой.



Программное обеспечение EClerk v.2,0 распространяется бесплатно и находится на сайте: www.relsib.com

7.1.1 Многоканальный измеритель-регистратор температуры WR-1-16-USB

Измеритель-регистратор WR-1-16-USB предназначен для измерения температуры с большого количества датчиков с последующей обработкой данных на ПК. Измеритель-регистратор применяется там, где нужно снимать температуру с движущихся или вращающихся объектов, измерять температуру внутри закрытых, герметичных камер и помещений, в том числе в опасных производствах, измерять температуру сразу большого количества объектов.

- Функция многоканального регистратора с памятью до 15 млн. записей;
- Возможность работы с данными без специального ПО;
- Высокая точность:
- Герметичный корпус;
- Наличие аварийного питания и «мягкого» выключения.



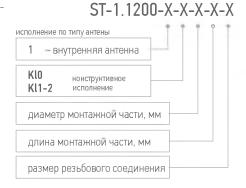
#### Описание прибора

температуры WR-1-16-USB предназначен для отображения измеренных значений температуры от беспроводных датчиков температуры, входящих в систему No-Wi-Sens System, их конфигурирования и синхронизации радиообмена между датчиками и прибором. WR-1-16-USB предназначен также для регистрации измеренных значений на карту памяти SD с последующей работой с данными при помощи программы NoWiSensViewer.exe. Программу можно скачать с сайта изготовителя www.relsib.com.

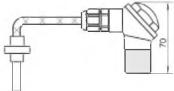
#### Два основных режима работы:

- Многоканальный измеритель регистратор 1 Отображение измеренных значений физических величин выбранного текущего канала с одновременным отображением номера канала (установленного пользователем), идентификационного номера этого канала (серийный номер датчика), или единицы измерения отображаемой физической величины. В этом режиме предусмотрено автоматическое переключение (перебор) всех подключенных датчиков (каналов) с периодом последовательного переключения 3 секунды.
  - 2. Режим конфигурирования многоканального измерителя регистратора и датчиков.

В этом режиме производится подключение новых датчиков температуры, их инициализация, установка параметров их опроса, единиц измерений и идентификации (номер канала).


Также в этом режиме есть возможность измерения уровня принимаемого сигнала многоканальным измерителем - регистратором и датчиком при различных взаимных расположениях многоканального регистратора и датчика в пространстве (дальность, направленность) при установке датчика в месте измерений.

| Частотный диапазон связи с датчиками | 2,42,4835 ГГц                                                                 |
|--------------------------------------|-------------------------------------------------------------------------------|
| Протокол передачи данных             | Low Power Sensor (LP-Sensor) с разделением по времени каналов передачи данных |
| Количество каналов измерения         | до 16                                                                         |
| Дальность связи                      | до 30 м                                                                       |
| Объем памяти                         | 15 млн. эначений                                                              |
| Период опроса каждого канала         | 160 с. (устанавливается пользователем)                                        |
| Мощность передатчика прибора         | 1,6 мВт                                                                       |
| Чувствительность приемника прибора   | -83 dBm                                                                       |
| Потребляемая мощность                | не более 1 Вт                                                                 |
| Средний срок службы                  | 3 года                                                                        |
| Габаритные размеры                   | 115x65x40 мм                                                                  |
| Macca                                | 0,18 кг                                                                       |


## 7.1.2 Беспроводной датчик температуры ST-1.1200.KL

Датчик предназначен для преобразования физической величины– температуры в цифровой сигнал и его передачи по беспроводному каналу в измеритель WR-1-16-USB.

- Большой ресурс работы до смены элемента питания
- Широкий диапазон температуры эксплуатации
- Возможность контроля температуры движущихся объектов
- Высокая точность ±0,5 °C



#### Конструктивные исполнения датчиков:





Kl0-с клеммной головкой и гермовводом для работы с выносным датчиком

**Kl1-2** — с клеммной головкой и резьбовым соединением для крепления на месте

| D=5,0 мм | L= 60; 80; 100; 120; 160; 200<br>M 12x1,5; M 16x1,5; G½                  |
|----------|--------------------------------------------------------------------------|
| D=8,0 мм | L= 80; 100; 120; 160; 200; 300; 400; 500; 630; 800; 1000<br>M 20x1,5; G½ |

Тип используемого чувствительного элемента — термопара XA(K). Датчик основное время находится в состоянии низкого энергопотребления (Sleep режим), а длительность цикла приема передачи составляет порядка 62 мс с периодом от 1 с.

Период опроса (передачи) датчика: от 1 до 60 секунд (устанавливается пользователем на измерительном приборе).

# сным датчиком с НСХ ХА(К)) ературы окр. среды ит питания 1/2АА напряжением 3,6 В

| Диапазон измерения температуры:                                             | <b>Kl0:</b> -50 +1200 °C (определяется выносным датчиком с HCX XA(K)) <b>Kl1-2:</b> -50+800 °C |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Абсолютная погрешность                                                      | ±(0,5+0,0025 T) °C                                                                             |
| Дополнительная температурная погрешность                                    | ±0,1°C на каждые 10°C изменения температуры окр. среды                                         |
| Питание                                                                     | автономное, тионил-хлоридный элемент питания 1/2АА напряжением 3,6 В                           |
| Продолжительность непрерывной работы при 20°C и периоде опроса датчика 10 с | 1,5 года                                                                                       |
| Разрешающая способность                                                     | 0,1°C (-50+999 °C)<br>1 °C (+1000+1200 °C)                                                     |

## 7.2.1 GSM - термометр с функцией контроля протечки ST-GSM

GSM-термометр ST-GSM предназначен для установки в квартирах, загородных домах, на дачах с целью постоянного дистанционного GSM-мониторинга температуры и наличия протечки воды. Благодаря выносному термочувствительному элементу ST-GSM можно использовать также для контроля за условиями хранения продуктов в погребе или холодильнике, температурой в бане (сауне) и т.д..

#### ST-GSM-X

- со встроенным термопрелбразователем
- с выносным термопрелбразователем

конструктивное исполнение

- Передача данных на удаленный мобильный телефон
- Питание от встроенного аккумулятора
- Необходимое ПО находится во внутренней flash-памяти прибора
- Дистанционное изменение параметров через sms-сообщения



#### Описание прибора

Термометр ST-GSM имеет две модификации: со встроенным чувствительным элементом температуры, с выносным чувствительным элементом температуры. Длина кабеля выносного чувствительного элемента равна 2 м. Использование выносного чувствительного элемента позволяет значительно увеличить диапазон контролируемой температуры. Термометр также комплектуется чувствительным элементом протечки, работающем по кондуктометрическому принципу (контроля сопротивления между двумя электродами).

Прибор осуществляет непрерывный удаленный контроль за температурой и наличием воды (протечки) с возможностью получения данных на мобиль-ный телефон посредством SMS сообщений: периодически через заданное время; при выходе какого-либо из контролируемых параметров за установленные границы; в ответ на отправленный SMSзапрос, а также в ответ на телефонный звонок с номера, зарегистрированного в приборе при его конфигурировании.

Термометр также ведет непрерывный контроль за напряжением на аккумуляторе и наличием внешнего напряжения питания с отправкой SMS при исчезновении внешнего питания и разряде аккумулятора.

#### Особенности GSM – термометра:

- GSM термометр питается от встроенного аккумулятора, что позволяет ему работать автономно до момента разряда аккумулятора. Зарядка аккумулятора производится через USB разъем с использованием стандартного адаптера автоматически при падении напряжения на аккумуляторе ниже заданного значения.
- Настройка температурного GSM-датчика производится через USB— интерфейс при помощи ПК.
- Максимальное количество номеров телефонов для отправки сообщений 5.
- После настройки с ПК часть параметров можно менять путем отправки SMS— сообщений специального формата с мобильного телефона.

- Возможность задания номера (номеров) телефона, с которого разрешена удаленная настройка датчика.
- GSM термометр может работать в «режиме online» при подключении к компьютеру через USB—вход с индикацией крупными цифрами значения температуры, а также мнемонически уровня сигнала GSM связи и степени заряда аккумулятора.
- Возможность раздельной настройки критериев автоматической отправки SMS-сообщений для каждого номера телефона.
- Включение-выключение энергосберегающего режима, позволяющего прибору работать от внутреннего аккумулятора в течение не менее 3-х месяцев.

- Удаленный контроль остатка денежных средств на SIM-карте температурного GSM-датчика
- Необходимое ПО находится во внутренней Flash—памяти GSM—термометра. Конфигурирование параметров температурного GSM-датчика осуществляется без использования внешнего ПО.

#### Технические характеристики

| Диапазон рабочей температуры электронного блока | 050°С (При отрицательной температуре зарядка встроенного аккумулятора блокируется и прибор работает ограниченное время до момента разряда аккумулятора) |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Емкость встроенного аккумулятора                | не менее 1300 мАхч                                                                                                                                      |
| Диапазон измерения / Абсолютная погрешность:    | ST-GSM-1:<br>0 до +50 °C / ± 1,0 °C<br>ST-GSM-1:<br>-10 до +85 °C / ± 1,0 °C<br>-10 до +125 °C / ± 2,0 °C<br>-50 до +125 °C / ± 3,0 °C                  |
| Ресурс автономной работы                        | • обычный режим - 5 дней, и не более 100 SMS-сообщений,<br>• экономичный режим- 3 месяца и не более 30 SMS-сообщений.                                   |
| Средняя наработка на отказ                      | не менее 20000 ч                                                                                                                                        |
| Средний срок службы                             | 3 года                                                                                                                                                  |
| Габаритные размеры электронного блока датчика   | 110х110х30 мм                                                                                                                                           |
| Macca                                           | 90 гр                                                                                                                                                   |

#### Программа ST-GSM







## 7.2.2 GSM-датчик температуры и отн.влажности SRHT-GSM

GSM — контроль климата на удаленных объектах: коттеджах, домах, дачах, погребах, серверных помещениях, необслуживаемых помещениях, на транспорте. Использование в системах «Умный Дом», и т.д.

#### SRHT-GSM-X

- повышенной точности.
- нормальной точности,
- пониженной точности

исполнение по точночти измерения

- Постоянный gsm-мониторинг влажности, температуры, наличия воды;
- Автономный источник питания;
- Программное обеспечение встроено в GSM-датчик;
- Управление и сигнализация с помощью поляризационного реле;
- Широкий диапазон напряжения питания;
- До пяти номеров телефонов для SMS сообщений с индивидуальной настройкой;
- Простая настройка и установка;
- Энергосберегающий режим;
- Удаленный контроль остатка денежных средств.





#### Описание прибора

GSM-датчик температуры и отн.влажности SRHT-GSM обеспечивает постоянный и непрерывный gsm-мониторинг относительной влажности воздуха и температуры, а также протечки воды. Прибор отправляет полученные данные на удаленный мобильный телефон с помощью SMS-сообщений. Для нормальной работы GSM-датчика температуры и влажности необходимо обеспечить GSM-сеть и внешнее питание.

Все необходимое ПО находится во флэш-памяти прибора. Для настройки GSM-датчика температуры и влажности достаточно подключить его к ПК и задать необходимые параметры. После настройки с ПК часть параметров можно изменять путем отправки SMS-сообщений специального формата.

Датчик питается от встроенного аккумулятора, что позволяет ему работать автономно до момента разряда аккумулятора. Зарядку аккумулятора можно производить как через USB разъем с

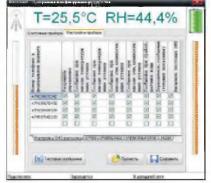
использованием стандартного адаптера, так и через клеммы питания с использованием постоянного или переменного напряжения. Широкий диапазон напряжения питания позволяет использовать датчик на различных объектах, в том числе на транспорте.

#### Возможные применения имеющегося релейного выхода:

- автоматическое перекрытие подачи воды при наличии «протечки» (при использовании электромагнитного клапана);
- автоматический вызов службы пожарной охраны при превышении температуры;
- включение вентилятора проветривания погреба при высокой
- экстренное отключение электропитания при превышении температуры и т.д.

#### Основные функции SRHT-GSM:

- 1. Непрерывный удаленный gsm-мониторинг температуры, влажности, и наличия воды (протечки);
- 2. Отправка данных gsm-мониторинга на удаленный мобильный телефон:
- периодически через заданное время;
- при выходе какого—либо из контролируемых параметров за установленные границы;
- в ответ на телефонный звонок или SMS-запрос.


- 3. Включение-выключение энергосберегающего режима, позволяющего прибору работать от внутреннего аккумулятора в течение не менее 3-х месяцев;
- 4. Удаленное включение (отключение) встроенного поляризационного реле путем отправки SMS-сообщения или автоматически при выходе какого-либо контролируемого параметра за установленные границы.

#### Технические характеристики

| Диапазон температуры эксплуатации                                   | 050 °C (При отрицательной температуре зарядка встроенного аккумулятора блокируется и прибор работает ограниченное время до момента разряда аккумулятора) |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Емкость встроенного аккумулятора                                    | не менее 1300 мАхч                                                                                                                                       |
| Диапазон измеряемой температуры                                     | 0+50 °C                                                                                                                                                  |
| Диапазон измерения относительной влажности                          | 0100 %                                                                                                                                                   |
| Значение сопротивления на входе контроля «протечки»                 | >100 кОм — «протечки» нет;<br><100 кОм — «протечка» есть.                                                                                                |
| Напряжение питания                                                  | 948 В постоянного или переменного тока, либо питание через стандартный USB—разъем от ПК или адаптера                                                     |
| Допускаемая нагрузка на выходном реле                               | <ul> <li>при напряжении переменного тока 250 В – 0,2 А;</li> <li>при напряжении постоянного тока 24 В – 0,5 А.</li> </ul>                                |
| Абсолютная погрешность измерения (темп.; отн. влаж.), не более      | SRHT-GSM-1: $\pm 0.5$ °C; $\pm 2.5$ %<br>SRHT-GSM-2: $\pm 1.0$ °C; $\pm 3.0$ %<br>SRHT-GSM-3: $\pm 1.5$ °C; $\pm 4.0$ %                                  |
| Максимальное количество номеров телефонов для<br>отправки сообщений | 5                                                                                                                                                        |
| Ресурс автономной работы                                            | • обычный режим - 5 дней, и не более 100 SMS-сообщений;<br>• экономичный режим- 3 месяца и не более 30 SMS-сообщений.                                    |
| Средняя наработка на отказ                                          | не менее 20000 ч                                                                                                                                         |
| Средний срок службы                                                 | 3 года                                                                                                                                                   |
| Габаритные размеры электронного блока датчика                       | 110х110х30 мм                                                                                                                                            |
| Macca                                                               | 90 гр                                                                                                                                                    |
|                                                                     |                                                                                                                                                          |

#### Программа SRHT-GSM







## 7.2.3 GSM-регулятор температуры многоканальный STR-GSM2-G

GSM-регулятор температуры многоканальный STR-GSM2-G представляет из себя полностью комплектный GSM-блок контроля и управления температурой, который содержит все необходимое для работы.

- Три канала измерения температуры;
- Контроль протечки;
- Два канала регулирования температуры;
- Функция сигнализатора;
- Возможность задания раздельных уставок для регулятора и сигнализатора с оповещением через SMS;
- Наличие автономного питания на длительный срок;
- Герметичный корпус;
- Простая настройка с ПК при помощи встроенного ПО;
- Три датчика температуры в комплекте.



- 1. Поддержание заданной температуры путем управления нагревателем или холодильником по двум независимым каналам по двухпозиционному закону регулирования (функция двухканального терморегулятора) с использованием третьего канала в режиме сигнализатора с оповещением по
- 2. Непрерывный контроль температуры в трех точках, протечки или уровня воды в одной точке с возможностью автоматического включения-отключения исполнительных устройств (до 2-х) по максимальному или минимальному уровню (функция сигнализатора, четыре входа, два выхода).
- 3. SMS оповещения периодические через заданное время, при выходе какого-либо контролируемого параметра за заданные пределы, либо по запросу.



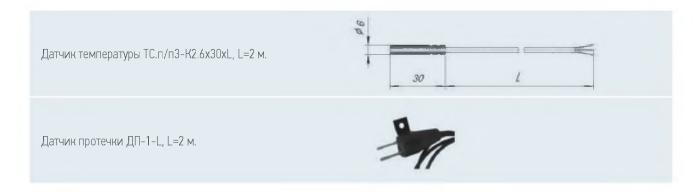
#### Описание прибора

Для нормальной работы GSM-регулятора температуры STR-GSM2-G необходимы только GSM-сеть и питание (переменное 220 В 50 Гц или постоянное 12...24 В).

GSM — регулятор STR-GSM2-G изготовлен в прочном герметичном корпусе настенного крепления. Подключение питания, датчиков и нагрузок осуществляется к клеммам, находящимся внутри прибора, через гермовводы.

SIM карта и USB разъем находятся под крышкой корпуса. Внешнего программного обеспечения не требуется. При подключе-

нии блока GSM-управления к USB-порту ПК, необходимо запустить исполняемый файл: relsib\_gsm.exe - программу для просмотра текущих значений измеряемых величин и конфигурации устройства. находящуюся во внутренней флэш-памяти прибора. Первоначальную настройку GSM блока для контроля температуры необходимо выполнить при подключении его компьютеру. В дальнейшем настройку отдельных параметров можно производить при помощи коротких SMS сообщений.


GSM - регулятор предназначен для жест-

ких условий эксплуатации. Заложенные в прибор возможности позволяют использовать его для различных целей. Основное питание GSM-регулятора температуры внешнее. Однако в приборе имеется также автономное питание, позволяющее ему работать достаточно долгое время. При отключении внешнего питания GSM-регулятор автоматически переключается на автономное питание и продолжает выполнять только функции SMS оповещения. Для экономии питания управление нагрузкой отключается.

В приборе имеется энергосберегающий сообщений и при выходе какого-либо GSM-регулятор температуры укомплекторежим, позволяющий увеличить время автономной работы прибора до 1,5...3-х месяцев. В энергосберегающем режиме отправкой короткой SMS команды можно в количестве трех штук. модем прибора большую часть времени только в течение примерно 3-х минут с находится в «спящем» состоянии, «просы- момента получения очередного SMS опопаясь» только для передачи периодических вещения от прибора.

параметра за установленные пределы.

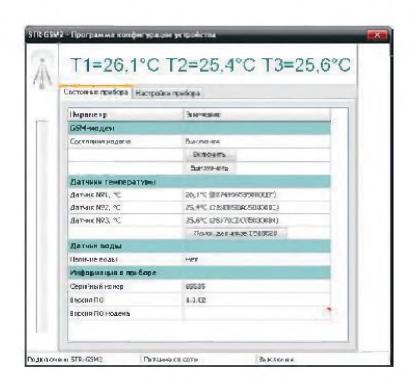
ван датчиком протечки воды стандартной В этом случае перенастроить прибор конструкции и датчиками температуры



В качестве чуствствительного элемента в датчиках температуры применяется сенсор DS18B20, работающий с шиной 1-Wire с внешним питанием, т.е. трехпроводной.

Последовательность подключения датчиков к прибору не имеет значения, т.к. порядок следования датчиков в программе определяется при поиске датчиков на шине.

С точки зрения точности измерения температуры датчики являются взаимозаменяемыми без потери точности измерения.


При необходимости можно заказать датчики температуры, датчики протечки или уровня других конструктивных исполнений в соответствии с номенклатурой НПК «Рэлсиб».

#### Сервисные параметры

- 1. Максимальное количество номеров телефонов для отправки сообщений – 5.
- 2. Возможность работы прибора в режиме «online» при подключении к компьютеру через USB–вход с индикацией крупными цифрами значений температуры, а также мнемонически уровня сиг-нала GSMсвязи.
- 3. Настройка (конфигурирование) параметров при помощи, встроенного в прибор ПО без использования внешнего ПО.
- 4. Возможность раздельной настройки критериев автоматической отправки SMS-сообщений для каждого номера телефона.

- 5. Возможность задания номера (номеров) телефона, с которого разрешена удаленная настройка прибора.
- 6. Удаленный контроль остатка денежных средств на SIM-карте прибора.
- 7. Отправка SMS со значениями контролируемых параметров: периодически через заданное время, при выходе какоголибо из контролируемых параметров за установленные границы, в ответ на отправленный SMS-запрос, а также в ответ на телефонный звонок с номера, зарегистрированного в приборе при его конфигурировании. Непрерывный контроль за наличием напряжения питания прибора с отправкой SMS.
- 8. Возможность использования прибора как в режиме регулятора, так и в режиме сигнализатора. Возможность задания раздельных уставок для регулятора и сигнализатора с оповещением через SMS.

| Количество каналов измерения температуры                         | 3                                                                                                 |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Диапазон измерения температуры/ абсолютная погрешность измерения | • -10+85 °С / ±0,5 °С;<br>• -5010 и +85+120 °С/ ±2 °С                                             |
| Максимальная длина линии связи от датчика температуры до прибора | 100 M                                                                                             |
| Количество каналов контроля протечки воды (уровня жидкости)      | 1                                                                                                 |
| Сопротивление на входе канала контроля протечки воды             | > 500 к0м - протечки нет;<br>< 100 к0м — протечка есть                                            |
| Период опроса каналов измерения и контроля                       | • 1 с внешнее питание включено;<br>• 10 с внешнее питание выключено                               |
| Количество и тип выходов                                         | 2 э/м реле 250 В, 2 А                                                                             |
| Температура эксплуатации прибора                                 | -40+70 °C                                                                                         |
| Автономное питание                                               | два элемента литий-тионилхлоридных исполнения 1/2AA напряжением 3,6 B, включенных последовательно |
| Время автономной работы                                          | в обычном режиме — 3 суток, в энергосберегающем режиме — 1,53 месяца                              |
| Потребляемая мощность                                            | не более 2 Вт                                                                                     |
| Степень защиты корпуса                                           | IP54                                                                                              |
| Габаритные размеры корпуса                                       | 115х90х55 мм                                                                                      |
| Macca                                                            | не более 90 г                                                                                     |



## 8.1 Контроллер уровня Контур-У универсальный

Контроллер уровня Контур-У предназначен для автоматического заполнения или осушения резервуара, сигнализации уровня, измерения уровня, управления насосами по выбранному алгоритму.

#### Контур-У-Х

- Измерение уровня в % от степени заполнения резервуара;
- Один прибор заменяет 14 аналогов;
- Расширенный диапазон температуры окружающего воздуха от -40 до +55°C.



– щитовое исполнение

настенное исполнение



#### Описание прибора

Ш1

H2

Контроллер обеспечивает работу в автоматическом режиме по одному из 14 встроенных алгоритмов или в ручном режиме, от встроенных кнопок ручного управления на передней панели. В качестве входных датчиков могут использоваться: кондуктометрические датчики, активные датчики с выходными ключами n-p-n типа («открытый коллектор»), механические контактные устройства («сухие контакты»), датчики с токовым выходом 0...5, 0...20 или 4...20 мА.

Для управления насосами и другим оборудованием контроллер оснащен тремя встроенными электромагнитными реле.

Необходимый алгоритм задается кнопками на передней панели. Достаточно просто набрать необходимый код на панели прибора. Настройка прибора на необходимый уровень электропроводимости жидкости задается с передней панели. Не нужно вскрывать корпус и менять перемычки.

При использовании с датчиками уровня, имеющими унифицированный токовый выходной сигнал, контроллер может выполнять функции измерения уровня в % от степени заполнения (осущения).

#### Алгоритмы работы:

- 1. Алгоритм 01.01 предназначен для автоматизации технологических процессов, связанных с контролем уровня жидкости в различного рода резервуарах. Для контроля уровня жидкости в емкости используются три погружных кондуметрических датчика: датчик верхнего уровня, датчик среднего уровня и датчик нижнего уровня.
- 2. Алгоритм 02.01 предназначен для управления насосом, работающим на заполнение емкости, и включения аварийной сигнализации. Для контроля уровня жидкости в емкости используются три погружных кондуметрических датчика: датчик верхнего уровня, датчик среднего уровня и датчик нижнего уровня. Насос включается при осушении датчика нижнего уровня, а выключается только при затоплении датчика среднего уровня. Аварийная сигнализация включается при затоплении датчика верхнего уровня, при этом выполнение алгоритма продолжается. Временные уставки не используются.
- 3. Алгоритм 02.02 предназначен для управления насосом, работающим на заполнение емкости, и включения аварийной сигнализации (аналогичен алгоритму 02.01, за исключением того, что датчик среднего уровня не используется). Насос включается при осушении датчика нижнего уровня, а выключается при его затоплении. Временные уставки не используются.

- 4. Алгоритм 03.01 предназначен для управления насосом, работающим на осушение емкости, и включения аварийной сигнализации. Для контроля уровня жидкости в емкости используются три погружных кондуметрических датчика: датчик верхнего уровня, датчик среднего уровня и датчик нижнего уровня. Насос включается при затоплении датчика среднего уровня, а выключается только при осущении датчика нижнего уровня. Временные уставки не используются.
- 5. Алгоритм 03.02 предназначен для управления насосом, работающим на осушение емкости, и включения аварийной сигнализации (аналогичен алгоритму 03.01. за исключением того, что датчик среднего уровня не используется). Насос включается при затоплении датчика нижнего уровня, а выключается при его осушении. Временные уставки не используются.
- 6. Алгоритм 04.01 предназначен для управления тремя насосами, каждый из которых независимо поддерживает уровень жидкости в одной из трех емкостей, снабженной датчиком уровня. Контроллер может работать по двум типам логики: наполнение и осушение. Тип логики можно изменить индивидуально для каждого насоса. Задание временных уставок.
- 7. Алгоритм 05.01 предназначен для управления основным и резервным насосами в системах водоснабжения, имеющих в своем составе два насоса. датчик наличия потока и. либо третий насос, либо аварийную сигнализацию. Задание временных
- 8. Алгоритм 05.02 полностью аналогичен алгоритму 05.01, отличие состоит в логике работы третьего реле, которое включается при отказе не обоих насосов, как в алгоритме 05.01, а при отказе любого из двух насосов.
- 9. Алгоритм 05.03 аналогичен алгоритму 05.01, отличие от алгоритма 05.01 состоит в логике работы третьего реле, которое включается каждый раз на заданное время при включении или переключении насосов.

- 10. Алгоритм 06.01 предназначен для поддержания уровня в емкости по показаниям двух датчиков. Включение насоса происходит при осушении датчика нижнего уровня, а выключение при затоплении верхнего. Система имеет в своем составе два насоса, работающих на наполнение емкости, которые для обеспечения равномерности износа включаются контроллером по очереди. Контроль работоспособности насосов ведется по датчику наличия потока.
- 11. Алгоритм 06.02 аналогичен алгоритму 06.01. Отличие состоит в том, что насосы работают на осущение расходного бака, а не на наполнение. Если уровень выше датчика верхнего уровня. включается идин из насосов и работает до осушения датчика нижнего уровня. В следующий раз при заливании датчика верхнего уровня осушать емкость будет второй насос.
- 12. Алгоритм 07.01 предназначен для управления тремя насосами, которые работают парами, при этом каждый насос имеет свой датчик наличия потока. Задание временных уставок.
- 13. Алгоритм 07.02 предназначен для управления насосной установкой, содержащей три подающих насоса, которые включаются поочередно и работают на одну общую магистраль, при этом каждый насос имеет свой собственный датчик наличия потока, замыкание контактов которого свидетельствует о нормальной работе насоса.
- 14. Алгоритм 08.01 предназначен для управления установкой, имеющей в своем составе два насоса, которые работают на осушение емкости. Для контроля уровня жидкости в емкости используется два датчика уровня: датчик нижнего и верхнего уровня. Для определения исправности насосов используется контрольная емкость. Задание временных уставок.

| Номинальное напряжение питания                                          | 220 В (50 Гц)                                                                                                     |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Допустимые отклонения напряжения питания от номинального значения       | +10%15%                                                                                                           |
| Потребляемая мощность                                                   | не более 4 ВА                                                                                                     |
| Количество встроенных алгоритмов работы                                 | 14                                                                                                                |
| Количество входов                                                       | 4                                                                                                                 |
| Напряжение встроенного в контроллер источника питания активных датчиков | 12±1 В (50 мА макс.)                                                                                              |
| Количество выходных реле                                                | 3                                                                                                                 |
| Допустимая нагрузка на контакты реле                                    | 10 A при напряжении 220 B и соs $\phi$ > 0,6                                                                      |
| Защита входов от высокого напряжения, не менее                          | 230 В переменного тока                                                                                            |
| Диапазон задания временных уставок                                      | 1 сек 99 суток                                                                                                    |
| Сопротивление жидкости, не более                                        | 400 кОм                                                                                                           |
| Средняя наработка на отказ                                              | 6000 ч.                                                                                                           |
| Условия эксплуатации:                                                   | температура окружающего воздуха: -40+55 °C относительная влажность: до 95% атмосферное давление: (84,0-106,7) кПа |
| Габаритные размеры:                                                     | Щ1: 111х96х48 мм<br>H2: 128х82х63,5 мм                                                                            |
| Macca                                                                   | не более 0,7 кг                                                                                                   |

## 8.2 Датчики уровня, протечки кондуктометрические

Кондуктометрические датчики уровня используются для поддержания уровня, сигнализации о понижении, превышении уровня. Датчики протечки применяются для сигнализации о появлении протечки. Датчики применяются только с электропроводящими жидкостями.



#### Датчик уровня одноэлектродный ДУ-1Н

Материал корпуса: 12X18H10T;

• Материал изолятора: фторопласт.

• Температура эксплуатации: -50...+200 °C.

Резьба: M12x1,5.

• Диаметр электрода: 3 мм.

• Длина электрода: 0,5; 1,0; 2,0 м

ДУ-1Н-Х

L, mm — длина электрода



#### Датчик уровня-протечки двухэлектродный ДУ-2Кл

Для крепления к стене.

• Материал корпуса: пластмасса;

• Материал электродов: 12X18H10T.

• Температура эксплуатации: -50...+100 °C.

• Диаметр электродов: 3 мм.

Длина электродов: 0,3; 0,5; 1,0; 2,0 м.

ДУ-2Кл-Х

**L** – длина зондов выбирается из ряда: 0.3; 0.5; 1.0; 2.0 м



## Датчик уровня-протечки трехэлектродный протяженный ДУ-3П

Изготовлен на основе специального кабеля в виде шлейфа с тремя жилами из нержавеющей стали и изоляцией из силиконовой резины.

- Температура эксплуатации шлейфа: -50...+200 °C.
- Температура эксплуатации клеммной головки: -50...+80 °C.
- Диаметр электродов: 1 мм.
- Длина шлейфа: до 100 м.
- Сопротивление жилы: 1 Ом/м.

ДУ-3П-Х-Х

Н - настенное исполнение,

Р – исполнение для резервуаровL – длина электродов (кабеля), м



#### Датчик протечки ДП-1

Для крепления вблизи края.

- Материал корпуса: резина.
- Диаметр электродов: 3 мм.
- Длина электродов: 30 м.
- Кабель: ШВВП 2\*0,5.
- Длина кабеля: 1,0 ; 2,0 ; 4,0 м.
- Температура эксплуатации: -20... +80 °C.

ДП-1-Х

L — длина кабеля, м

## Блоки силовые симисторные БСС

Блоки БСС предназначены для бесконтактного регулирования средней мощности в нагрузке в автоматизированных системах регулирования и управления технологическими процессами, а также для замены магнитных пускателей в том случае, когда требуется продолжительный срок службы и значительное количество коммутационных циклов.

Блоки могут быть использованы с регуляторами температуры, имеющими логический выход (транзисторный ключ).

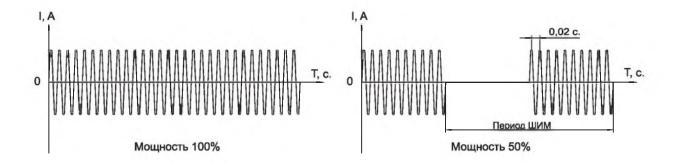
БСС-Х

**X** – ном. коммутируемый ток: 16, 25, 40 A



#### Описание прибора

мальные помехи в сети.


Возможно использование блока для Для управления трехфазной нагрузкой управления нагрузкой по методу широт- необходимо использовать два или три модуляции (ШИМ). но-импульсной

Симисторный блок состоит из силового В методе ШИМ нагрузка включается схемы подключения трехфазной нагрузсимистора, схемы управления и радиатора. На время длительности положитель- кой типа «треугольник», достаточно Схема управления имеет: гальваническую ного периода ШИМ, который задается установить два блока. Две фазы подклюразвязку от входной цепи; функцию вклю- пользователем. Среднее значение вывочения или отключения коммутируемого димой мощности, в процентах от полной напряжения при «переходе через ноль», мощности нагревателя, определяется ключается к третьей вершине напрямую. в результате чего обеспечиваются мини- отношением времени включения к пери- Точно также достаточно двух блоков при оду ШИМ.

однофазных блока. При использовании

чаются к двум вершинам «треугольника» через силовые блоки, а третья фаза подиспользовании схемы подключения типа «звезда» без нулевого провода. При использовании схемы «звезда» с нулевым проводом следует установить три блока.

#### Диаграмма зависимости тока от времени



| Наименование регистратора                                                                                 | БСС-16                                                 | BCC-25                | БСС-40                |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|-----------------------|--|
| Габаритные размеры                                                                                        | 95х50х70 мм                                            | 95х50х100 мм          | 95х50х150 мм          |  |
| Номинальный коммутируемый ток при температуре основания 25°C                                              | 16 A                                                   | 25 A                  | 40 A                  |  |
| Максимальный кратковременный ток в течение 25 мин                                                         | 18 A                                                   | 30 A                  | 45 A                  |  |
| Ударный неповторяющийся ток в открытом состоянии                                                          | 160 A                                                  | 250 A                 | 400 A                 |  |
| Силовой элемент                                                                                           | симистор ВТА16 — 600В                                  | симистор ВТА24 – 600В | симистор ВТА41 — 600В |  |
| Диапазон коммутируемого напряжения переменного тока                                                       |                                                        | 30300 B               |                       |  |
| Входное напряжение                                                                                        | 530 В пост. тока                                       |                       |                       |  |
| Максимальный входной ток                                                                                  | 20 MA                                                  |                       |                       |  |
| Время срабатывания                                                                                        | не более 10 мсек                                       |                       |                       |  |
| Сопротивление изоляции между входом и выходом                                                             | 10 <sup>6</sup> Ом при напряжении 500 В                |                       | ) B                   |  |
| <b>Диаметр провода при подключении:</b> - к входным клеммам - к выходным колодкам: БСС–16, СС–25 - БСС–40 | 0,31,0 мм<br>1,52,0 мм<br>2,03,0 мм                    |                       |                       |  |
| иматическое исполнение УХЛ 4.2 по ГОСТ 15150-69                                                           |                                                        |                       |                       |  |
| Условия эксплуатации: - температура окружающего воздуха - относительная влажность - атмосферное давление  | −20+55°С<br>До 75% при темп. +30°С<br>(84,0-106,7) кПа |                       |                       |  |

## 9.2 Блоки силовые тиристорные БСТ

Блоки силовые тиристорные типа БСТ предназначены для бесконтактного регулирования тока нагрузки в автоматизированных системах измерения, регулирования и управления технологическими процессами.

Блок предназначен для замены пускателей в том случае, когда требуется продолжительный срок службы и значительное количество коммутационных циклов.

#### Описание прибора

Тиристорный блок состоит из силовых В методе ШИМ нагрузка включается на тиристоров, схемы управления, радиатора и кронштейна. Схема управления построена на базе оптосимистора, который имеет оптическую развязку цепи управления от силовой цепи и детектор прохождения напряжения через ноль.

Выходные тиристоры открываются в момент, когда напряжение на них близко к нулю, поэтому силовой блок создает минимальные помехи в сети.

#### Блоки БСТ могут работать:

- 1. По методу управления средней мощностью электронагревателей (или методу равномерного по времени распределения рабочих сетевых периодов).
- 2. По методу широтно-импульсной модуляции (ШИМ).

долю периода ШИМ, который задается пользователем или управляющим прибором, например, терморегулятором с ПИД-законом. Среднее значение выводимой мощности, в процентах от полной мощности нагревателя, определяется отношением времени включения к периоду ШИМ.

Для охлаждения тиристоров силовой блок имеет радиаторы (охладители). Площадь радиатора подобрана так, чтобы при максимальном токе и температуре воздуха 30°С, температура радиатора не превышала 100°С.

Для управления трехфазной нагрузкой необходимо использовать два или три однофазных блока регулирования.

- ном. коммутируемый ток: 160, 250 А

БСТ-Х



| Наименование регистратора                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | БСТ-160                                                            | БСТ-250                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--|
| Допустимый ток при температуре окружающего воздуха +85°С, без обдува                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 A                                                              | 140 A                                            |  |
| Допустимый ток с обдувом воздушного потока со скоростью 6 м/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 160 A                                                              | 250 A                                            |  |
| Силовой элемент                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | тиристор Т161-160                                                  | тиристор Т171-250                                |  |
| Диапазон коммутируемого напряжения переменного тока                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                 | 30380 B                                          |  |
| Входное напряжение                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 530 B r                                                            | пост. тока                                       |  |
| Максимальный входной ток 20 мА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | мА                                               |  |
| Время срабатывания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | не более 10 мсек                                                   |                                                  |  |
| Сопротивление изоляции между входом и выходом                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Не менее 10 <sup>6</sup> Ом пр                                     | Не менее 10 <sup>6</sup> Ом при напряжении 500 В |  |
| Номинальный коммутируемый ток:БСТ-160БСТ-250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160 А (кратк. до 5 мин — 180 А)<br>250 А (кратк. до 5 мин — 280 А) |                                                  |  |
| Электрическая прочность изоляции между входом и выходом                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | не менее 1000 B                                                    |                                                  |  |
| Variables and supplementations and the supplementation of the supple | +5+45°C                                                            |                                                  |  |
| Условия эксплуатации:- температура окружающего воздуха- относительная влажность- атмосферное давление                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (30-80)%<br>(84,0-106,7) кПа                                       |                                                  |  |
| Габаритные размеры                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240х140х250 мм                                                     |                                                  |  |
| Macca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | не более 1,8 кг                                                    |                                                  |  |

## 10.1 Блоки питания трансформаторные БП2

Блоки питания типа БП2 предназначены для питания стабилизированным напряжением 24 В постоянного тока 25 мА различных радиоэлектронных устройств, а также для реализации интерфейса «токовая петля»: 0-5 мА; 0-20 мА и 4-20 мА.

**БП2-X** 

X – кол-во каналов 2, 4

- Индикация о наличии напряжения в сети
- Защита от перегрузки, короткого замыкания и перегрева
- Индикация о перегрузке каждого канала



#### Описание прибора

трансформаторными по принципу действия,крепятся на ДИН-рейку, имеют два или четыре выходных канала. Блоки

Блоки питания БП2-2 и БП2-4 предназна- БП2-2, БП2-4 используются для питания чены для преобразования переменного стабилизированным напряжением разнапряжения 220 В в постоянное напря- личных радиоэлектронных устройств, в жение 24 В. Блоки питания являются том числе датчиков, имеющих унифицированный токовый выходной сигнал.

| Габаритные размеры                                                                                            | 72х90х52 мм                            |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Степень защиты корпуса                                                                                        | IP20                                   |
| Количество выходных каналов: БП2-2 / БП2-4                                                                    | 2 / 4                                  |
| Входное напряжение переменного тока                                                                           | 220 B ± 15%                            |
| Частота входного переменного напряжения                                                                       | 50 Гц                                  |
| Номинальный ток на канал                                                                                      | 25 мА                                  |
| Порог индикации перегрузки по току                                                                            | 32 MA                                  |
| Нестабильность выходного напряжения при изменении напряжения питания                                          | ± 1%                                   |
| Нестабильность выходного напряжения при изменении тока нагрузки                                               | ± 0,5%                                 |
| Амплитуда пульсаций выходного напряжения                                                                      | 100 MB                                 |
| Потребляемый ток на холостом ходу: БП2-2 / БП2-4                                                              | 15 MA / 30 MA                          |
| Коэф. температурной нестабильности выходного напряжения в рабочем диапазоне температур                        | ± 0,015%/°C                            |
| Электрическая прочность изоляции (действующее значение): вход-выход / вход-корпус                             | 3,0 кВ / 1,5 кВ                        |
| Климатическое исполнение                                                                                      | УХЛ 4.2 по ГОСТ 15150-69               |
| <b>Условия эксплуатации:</b> температура окружающего воздуха / относительная влажность / атмосферное давление | -20+55°С / (30-80)% / (84,0-106,7) кПа |
| Macca                                                                                                         | не более 0,3 кг                        |
|                                                                                                               |                                        |

## 10.2 Блоки питания импульсные БП15, БП30

Блоки питания импульсные предназначены для питания стабилизированным напряжением 5, 9, 12 и 24 В постоянного тока различных радиоэлектронных устройств (релейной автоматики, контроллеров, датчиков и т.п.)

- Возможность ступенчатого задания выходного напряжения
- Защита от перегрузки, короткого замыкания и перегрева
- Широкий диапазон входного напряжения

#### Описание прибора

Блоки питания БП15 и БП30 выпускаются с регулируемым выходным напряжением (с помощью джампера на передней панели). Блоки питания имеют корпус, с креплением на DIN-рейку.

| Количество каналов                                                                                        | 1                                       |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Входное напряжение: переменного тока / постоянного тока                                                   | 90265 B / 110370 B                      |
| Частота входного переменного напряжения                                                                   | 50 Гц                                   |
| Выходное напряжение (задается пользователем установкой джампера на передней панели)                       | 5, 9, 12, 24 B                          |
| Номинальный выходной ток: БП15 / БП30                                                                     | 0,6 A / 1,3 A                           |
| Порог индикации перегрузки по току: БП15 / БП30                                                           | 0,7 A / 1,4 A                           |
| Нестабильность выходного напряжения при изменении тока нагрузки от 0,1*Iном до Iном                       | ±0,5%                                   |
| Амплитуда пульсаций выходного напряжения                                                                  | 100 мВ                                  |
| Потребляемый ток на холостом ходу                                                                         | 15 MA                                   |
| Коэффициент температурной нестабильности выходного напряжения в рабочем диапазоне температур              | ±0,01%/°C                               |
| Электрическая прочность изоляции (действующее значение): вход-выход                                       | 3,0 кВ                                  |
| Степень защиты корпуса                                                                                    | IP20                                    |
| Габаритные размеры                                                                                        | 72х90х52 мм                             |
| Климатическое исполнение                                                                                  | УЗ по ГОСТ 15150-69                     |
| Условия эксплуатации:<br>температура окружающего воздуха / относительная влажность / атмосферное давление | -40+55 °C / (30-80)% / (84,0-106,7) кПа |
| Macca                                                                                                     | не более 0,3 кг                         |
|                                                                                                           |                                         |

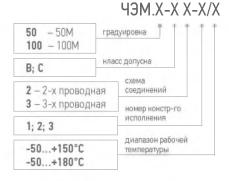
## 10.3 Блок питания импульсный БПГ12 герметичный

Блок питания импульсный герметичный БПГ 12 используется для построения «распределенных» систем контроля и автоматизации на базе физического интерфейса RS485. БПГ 12 можно использовать как для питания линии RS485, так и отдельных, входящих в нее приборов. Может применяться в жестких условиях эксплуатации.

- Герметичный настенный корпус
- Использование в жестких условиях эксплуатации

#### Описание прибора

Блок питания импульсный герметичный БПГ 12 предназначен для питания стабилизированным напряжением постоянного тока 24 В различных радиоэлектронных устройств (релейной автоматики, контроллеров, датчиков и т.п.). Блок выпускается в герметичном настенном корпусе.




| Количество каналов                                                                           | 1                  |
|----------------------------------------------------------------------------------------------|--------------------|
| Входное напряжение: переменного тока / постоянного тока                                      | 90265 B / 110370 B |
| Частота входного переменного напряжения                                                      | 50 Гц              |
| Выходное напряжение                                                                          | 24 B               |
| Максимальный выходной ток                                                                    | 0,5 A              |
| Порог индикации перегрузки по току                                                           | 0,7 A              |
| Нестабильность выходного напряжения при изменении тока нагрузки от 0,1*lmax до lmax          | ±0,5%              |
| Потребляемый ток на холостом ходу                                                            | 15 мА              |
| Коэффициент температурной нестабильности выходного напряжения в рабочем диапазоне температур | ±0,01%/°C          |
| Электрическая прочность изоляции (действующее значение): вход-выход                          | 3,0 кВ             |
| Степень защиты корпуса                                                                       | IP54               |
| Габаритные размеры                                                                           | 115х65х40 мм       |
| Диапазон рабочих температур                                                                  | -40+55°C           |
| Масса                                                                                        | не более 0,3 кг    |
| Средний срок службы                                                                          | 5 лет              |

## 11.1 Чувствительные элементы медные и платиновые

Чувствительные элементы применяются в термометрах сопротивления. Чувствительные элементы в конструктивном исполнении «1» могут применяться как самостоятельное изделие для контроля температуры воздуха и неагрессивных газов, а также для измерения температуры холодного спая в измерителях-регуляторах, работающих с термопарами.

#### Чувствительные элементы медные (ЧЭМ)





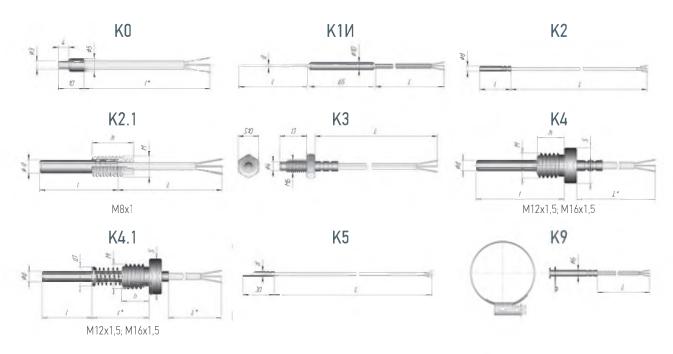
#### Чувствительные элементы платиновые (ЧЭП)

ЧЭП.Х-Х2-1



#### Описание прибора

Термочувствительные элементы имеют следующие типы HCX: 50M, 100M, Pt100, Pt1000. Чувствительные элементы медные (50M, 100M) выпускаются в корпусе (исп. 1) и без корпуса (исп. 2, 3). Платиновые чувствительные элементы имеют только исполнение 1. Термочувствительный элемент медный представляет собой малогабаритную катушку из тонкого медного провода покрытого высокотемпературным лаком, намотанного бифилярно для уменьшения влияния на параметры электромагнитного поля. Термочувствительный элемент платиновый представляет собой тонкую пленку из платины, нанесенную на керамическую подложку. Принцип действия термочувствительных элементов основан на известной зависимости электрического сопротивления меди (платины) от температуры.

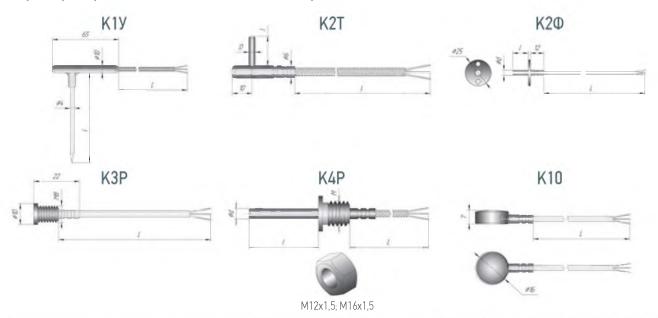

| № конструктивного исполнения      | 1                      |              | 2                    | 3   |  |
|-----------------------------------|------------------------|--------------|----------------------|-----|--|
| Внешний вид                       | 8 0 8                  |              | 2 2                  | 50  |  |
| HCX                               | 50M                    | Pt100,Pt1000 | 50M, 100M            |     |  |
| Диапазон измерений                | -50+150 °C, -50+180 °C |              |                      |     |  |
| Класс точности                    | B, C                   | В            | A, B                 | С   |  |
| Схема соединений                  | 2                      |              | 3                    | 2   |  |
| Номинальный измерительный ток, мА | 0,2                    |              | 0,5                  | 0,2 |  |
| Время реакции, с                  | 4,0                    |              | 5,0                  | 2,0 |  |
| Материал оболочки                 | Сталь Ст10 +Ni         |              | Фторопластовая лента |     |  |
| Степень защиты                    | IP66                   |              | IP00                 |     |  |

# 11.2 Термопреобразователи сопротивления с кабельным выводом



### Описание прибора

Термопреобразователь сопротивления содержит термочувствительный элемент, который соединяется при помощи выводов с внешним кабелем и защитную арматуру из антикоррозионной стали. Внутреннее пространство термопреобразователя плотно заполняется мелкодисперсным порошком окиси алюминия. Внешний кабель имеет гибкие медные роволочные жилы с изоляцией из фторопласта. Внешняя оболочка кабеля изготовлена из селиконовой резины. В некоторых моделях применяется кабель с экраном.






Внесены в Государственный реестр средств измерений Российской Федерации под №51307-12 от 21.09.2012 г.

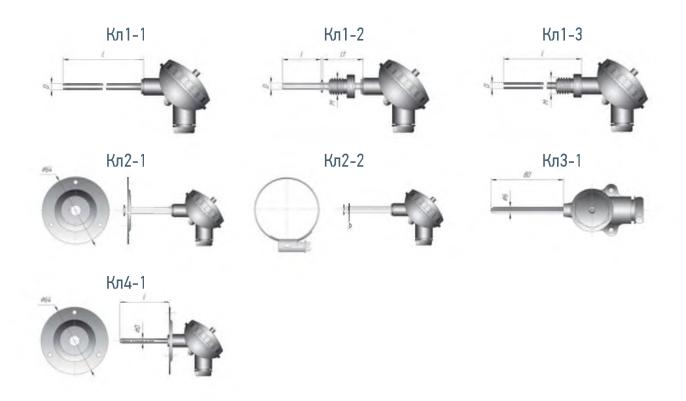
| Конструктивное испол-<br>нение / Применение                        | Диа-<br>метр<br>мон-<br>тажной<br>части,<br>мм | Длина<br>монтажной<br>части, мм                         | нсх                                       | Класс<br>допуска | Диапазон<br>измеряемой<br>тем-ры, °С | Время тер-<br>мической<br>реакции, с        | Ном-ый<br>ток, м <b>А</b> | Схема<br>соеди-<br>нений | Длина<br>кабеля, м                                 | Тип<br>кабеля     |
|--------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|-------------------------------------------|------------------|--------------------------------------|---------------------------------------------|---------------------------|--------------------------|----------------------------------------------------|-------------------|
| <b>КО</b> Контроль температуры двигателей, подшипников, радиаторов | 3,0                                            | 10,0                                                    | 50M<br>Pt100; Pt1000                      | C<br>B           | -50+150                              | 4,0                                         | 0,2                       | 2 пр.; 3<br>пр.          | 2 пр.: 0,2;<br>0,5<br>3 пр.: 0,2;<br>0,5; 1,0; 2,0 | RFM; RFS          |
| <b>К1И</b><br>Внутри продуктов при<br>варении, копчении            | 2,0                                            | 100,0                                                   | 50M<br>Pt100; Pt1000                      | C<br>B           |                                      | 3,0                                         | 0,2                       |                          |                                                    |                   |
|                                                                    | 4,0                                            | 120,0                                                   | 50M; 100M<br>Pt100; Pt1000;<br>50Π; 100Π  | В                | -50+180                              | 7,0                                         | 0,5                       | 3 пр.                    | 2,0; 4,0; 6,0                                      | RFS; RFSM         |
| 110                                                                | 2,0                                            | 60,0; 80,0; 100                                         | 50M                                       | C<br>B; C        | -50+150                              | 3,0                                         | 0,2                       | 2 пр.                    | 0,2                                                | МГТФ 0,07         |
| <b>К2</b><br>Температура воздуха,<br>массивных изделий             | 4,0; 5,0;<br>6,0                               | 20,0; 30; 60,0;<br>80,0; 100,0                          | 50M; 100M                                 | B; C             | -50+180                              | д4-7,0;<br>д5-9,0;                          | 0,5                       | 3 пр.                    | 0,2; 1,0; 2,0;<br>4,0; 6,0                         | RFM; RFS;<br>RFSM |
|                                                                    |                                                | 60,0; 80,0;<br>100,0                                    | Pt100; Pt1000;<br>50Π; 100Π               | A; B             |                                      | д6-15,0                                     |                           |                          |                                                    |                   |
| <b>К2.1</b><br>Температура воздуха,<br>массивных изделий           | 4,0; 5,0                                       | 4,0; 5,0<br>60,0 80,0;<br>100,0<br>60,0; 80,0;<br>100,0 | 50M; 100M<br>Pt100; Pt1000;<br>50Π; 100Π  | B; C             | -50+180                              | д4-7,0;<br>д5-9,0                           | 0,5                       | 3 пр.                    | 0,2; 1,0; 2,0;<br>4,0; 6,0                         | RFM; RFS;<br>RFSM |
| <b>КЗ</b><br>Прессформы,<br>подшипники                             | 4,0                                            | 13,0                                                    | 50M; 100M;<br>Pt100; Pt1000               | B; C             | -50+180                              | 12,0                                        | 0,5                       | 3 пр.                    | 0,2; 1,0; 2,0;<br>4,0; 6,0                         | RFM; RFS;<br>RFSM |
| <b>К4</b> Контроль жидких и сыпучих сред                           | 4,0; 5,0;<br>6,0; 8,0                          | 60,0; 80,0<br>100,0; 120,0<br>160,0; 200,0;<br>250; 320 | 50M<br>Pt100; Pt1000;<br>50Π; 100Π        | B; C<br>A; B     | -50+180                              | д4-10,0;<br>д5-12,0;<br>д6-15,0;<br>д8-20,0 | 0,5                       | 3 пр.                    | 0,2; 1,0; 2,0;<br>4,0; 6,0                         | RFM; RFS;<br>RFSM |
| <b>К4.1</b><br>Контроль жидких и<br>сыпучих сред                   | 4,0; 5,0;<br>6,0; 8,0                          | 60,0; 80,0<br>100,0; 120,0<br>160,0; 200,0;<br>250; 320 | 50M Pt100; Pt1000; 50П; 100П              | B; C             | -50+180                              | д4-10,0;<br>д5-12,0;<br>д6-15,0;<br>д8-20,0 | 0,5                       | 3 пр.                    | 0,2; 1,0; 2,0;<br>4,0; 6,0                         | RFM; RFS;<br>RFSM |
| <b>К5</b> Поверхность твердых тел                                  | 4,0; 5,0                                       | 60,0                                                    | 50M; 100M;<br>Pt100; Pt1000;<br>50Π; 100Π | B; C             | -50+180                              | д4-7,0;                                     | 0,5                       | 3 пр.                    | 0,2; 1,0; 2,0;<br>4,0; 6,0                         | RFM; RFS;<br>RFSM |
| <b>К9</b><br>Поверхность труб                                      | -                                              | -                                                       | 50M; Pt100;<br>Pt1000                     | B; C             | -50+150                              | 15,0                                        | 0,5                       | 3 пр.                    | 0,2; 1,0; 2,0;<br>4,0; 6,0                         | RFM; RFS;<br>RFSM |

### Термопреобразователи для специальных применений



| Конструктивное испол-<br>нение / Применение                                                | Диаметр<br>монтажной<br>части, мм | Длина<br>монтажной<br>части, мм | нсх                                       | Класс<br>допуска | Диапазон<br>измеряемой<br>тем-ры, °С | Время тер-<br>мической<br>реакции, с | Ном-ый<br>ток, мА | Схема<br>соеди-<br>нений | Длина<br>кабеля, м            | Тип<br>кабеля        |
|--------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|-------------------------------------------|------------------|--------------------------------------|--------------------------------------|-------------------|--------------------------|-------------------------------|----------------------|
| <b>К1У</b><br>Внутри продуктов при<br>варении, копчении                                    | 4,0                               | 120,0                           | 50M; 100M;<br>Pt100; Pt1000;<br>50Π; 100Π | В                | -50+180                              | 7,0                                  | 0,5               | 3 пр.                    | 2,0; 4,0;<br>6,0              | RFS;<br>RFSM         |
| К2Т                                                                                        | 20.70                             | 10,0; 20,0;                     | 50M                                       | В                | -50+150                              | д3-7,0;                              | 0.5               | 2                        | 0,2; 1,0;                     | RFS;                 |
| Сушка древесины,<br>и в медицине                                                           | 3,0; 4,0                          | 30,0; 40,0;<br>50,0             | Pt100; Pt1000                             | A; B             |                                      | д4-10,0                              | 0,5               | 3 пр.                    | 2,0; 4,0;<br>6,0              | RFSM                 |
| <b>К2Ф</b><br>Термокамеры                                                                  | 5,0                               | 10,0; 20,0;<br>30,0             | 50M; Pt100;<br>Pt1000                     | В                | -50+150                              | 15,0                                 | 0,5               | 3 пр.                    | 0,2; 1,0;<br>2,0; 4,0;<br>6,U | RFM;<br>RFS;<br>RFSM |
| <b>КЗР</b><br>Камеры полимерной                                                            | 6,0                               | 10,0                            | 50M                                       | В, С             | -50+150                              |                                      |                   | 3 пр.                    | 0,2; 1,0;                     |                      |
| окраски, в металлических конструкциях                                                      |                                   |                                 | Pt100; Pt1000                             | В                |                                      | 30,0                                 | 0,5               |                          | 2,0; 4,0;<br>6,0              | RFS                  |
| <b>К4Р</b><br>Термокамеры,                                                                 | 4,0; 5,0; 6,0;                    | 60,0; 80,0;<br>100,0; 120,0;    | 50M; 100M                                 | В, С             | -50+180                              | д4-10,0;<br>д5-12,0;                 | 0,5               | 3 пр.                    | 0,2; 1,0;                     | RFM;<br>RFS;         |
| жидкостные термостаты<br>с установкой изнутри                                              | 8,0                               | 160,0; 200,0;<br>250 0 320 0    | Pt100; Pt1000;<br>50Π; 100Π               | В                | -30+180                              | д6-16,0;<br>д8-20,0                  | 0,5               |                          | 2,0; 4,0;<br><b>6,0</b>       | RFSM                 |
| К10 Со встроенным магнитом, на поверхности метал-лических емкостей, труб большого диаметра | 16,0                              | 7,5                             | 50M; Pt100;<br>Pt1000                     | C; B             | -50+100                              | 120,0                                | 0,5               | 3 пр.                    |                               | RFM;<br>RFS          |

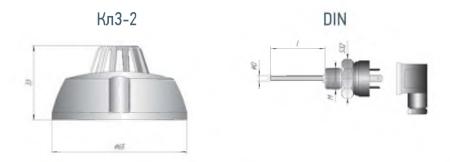
**Пример обозначения: TCM.50M-K1И-B3/-50...+150°C-4-120-2,0** (тип HCX - 50M, конструктивное исполнение - K1И, Класс допуска - В, схема соединения - трехпроводная, диапазон измеряемой температуры -50...+150 °C, диаметр монтажной части - 4 мм, длина монтажной части - 120 мм, длина кабеля - 2,0 м)


### 11.3 Термопреобразователи сопротивления с клеммной головкой



### Описание прибора

Термопреобразователь сопротивления содержит термочувствительный элемент, который соединяется при помощи выводов с клеммами клеммной головки и защитную арматуру из антикоррозионной стали. Внутреннее пространство термопреобразователя плотно заполняется мелкодисперсным порошком окиси алюми-






| Конструктвное<br>исполнение          | Клемм-<br>ная<br>головка* | Диаметр<br>монтажной<br>части, мм | Резьбовое<br>соедине-<br>ние, мм | Длина<br>монтажной<br>части, мм                           | нсх                                          | Класс<br>допуска                                                                     | Диапазон<br>измеряемой<br>температуры, °С | Время<br>терми-<br>ческой<br>реакции, с | Номи-<br>нальный<br>ток, мА | Схема<br>соеди-<br>нений |
|--------------------------------------|---------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------|--------------------------|
|                                      |                           | 5,0                               |                                  | 80,0; 100,0;                                              |                                              |                                                                                      |                                           | 9,0                                     | 0,5                         |                          |
|                                      | М                         | 6,0                               |                                  | 120,0; 160,0;<br>200,0                                    |                                              | 50M,100M<br>- B Pt100,                                                               |                                           | 15,0                                    | 1,0                         |                          |
| <b>Кл1-1</b> погружной               |                           | 8,0                               | -                                | 80,0; 100,0;<br>120,0; 160,0;                             | 50M; 100M;<br>Pt100;<br>Pt1000; 50Π;         | Pt1000, 50П,<br>100П l до<br>120 мм – В                                              | -50+180                                   | 20,0                                    | 2,0                         | 3 пр.                    |
|                                      | Б                         | 10,0                              |                                  | 200,0; 300,0;<br>400,0; 500,0;<br>630,0; 800,0;<br>1000,0 | 100Π                                         | свыше - А,                                                                           |                                           | 30,0                                    | 2,0                         |                          |
|                                      | М                         | 5,0                               | M12x1,5;<br>G1/4                 | 80,0 100,0<br>120,0; 160,0;                               |                                              | 5014.40014                                                                           |                                           | 9,0                                     | 0,5                         |                          |
|                                      | (1=30)                    | 6,0                               | M16x1,5;<br>G3/8                 | 200,0                                                     | 50M; 100M;                                   | 50M,100M<br>– B Pt100,<br>Pt1000, 50Π,                                               | ,                                         | 15,0                                    | 1,0                         | 3 пр.                    |
| <b>Кл1-2</b> погружной               | _                         | 8,0                               | 1400 4 5                         | 80,0 100,0<br>120,0 160,0                                 | Pt100;<br>Pt1000; 50Π;<br>100Π               | 100П l до<br>120 мм — В                                                              | -50+180                                   | 20,0                                    | 2,0                         |                          |
| Б<br>(l1=12                          | (L1=120)                  | 10,0                              | M20x1,5;<br>G1/2                 | 200,0; 300,0;<br>400,0; 500,0;<br>630,0; 800,0;<br>1000,0 | 10011                                        | свыше - А,<br>В                                                                      |                                           | 30,0                                    | 2,0                         |                          |
|                                      | М                         | 5,0                               | M12x1,5;<br>G1/4                 | 80,0; 100,0;<br>120,0; 160,0;                             |                                              |                                                                                      |                                           | 9,0                                     | 0,5                         |                          |
|                                      | I <sub>A</sub> I          | 6,0                               | M16x1,5;<br>G3/8                 | 200,0                                                     | 50M; 100M;<br>Pt100;<br>Pt1000; 50Π;<br>100Π | 50M,100M<br>— В Pt100,<br>Pt1000, 50П,<br>100П l до<br>120 мм — В<br>свыше - А,<br>В | -50+180                                   | 15,0                                    | 1,0                         |                          |
| <b>Кл1-3</b> погружной               |                           | 8,0                               | 1400 1 5                         | 80,0; 100,0;<br>120,0; 160,0;                             |                                              |                                                                                      |                                           | 20,0                                    | 2,0                         | 3 пр.                    |
|                                      | Б                         | 10,0                              | M20x1,5;<br>G1/2                 | 200,0; 300,0;<br>400,0; 500,0;<br>630,0; 800,0;<br>1000,0 |                                              |                                                                                      |                                           | 30,0                                    | 2,0                         |                          |
| <b>Кл2-1</b> поверхносный            | М                         | 65,0                              | _                                | _                                                         | 50M; Pt100;<br>Pt1000;                       | C<br>B                                                                               | -50+150                                   | 15,0                                    | 0,5                         | 3 пр.                    |
| <b>Кл2-2**</b> поверхносный          | М                         | -                                 | -                                | -                                                         | 50M; Pt100;<br>Pt1000;                       | C<br>B                                                                               | -50+150                                   | 15,0                                    | 0,5                         | 3 пр.                    |
| <b>Кл3-1</b><br>уличный<br>воздушный | У                         | 6,0                               | -                                | 80,0                                                      | 50M; 100M;<br>Pt100;<br>Pt1000; 50Π;<br>100Π | В                                                                                    | -50+100                                   | 15,0                                    | 0,5                         | 2 пр.                    |
| Кл4-1                                |                           | 2,0                               |                                  | 100,0                                                     | 50M<br>Pt100                                 | В, <b>С</b><br>В                                                                     |                                           | 3,0                                     | 0,2                         |                          |
| для систем<br>вентиляциии            | М                         |                                   | _                                |                                                           | 50M; 100M                                    | B, C                                                                                 | -50+100                                   | +100                                    | 0,5                         | 3 пр.                    |
| и систем<br>кондиц-ия                |                           | 4,0                               |                                  | 100,0; 200,0                                              | Pt100;<br>Pt1000; 50Π;<br>100Π;              | A, B                                                                                 |                                           | 7,0                                     |                             | 3 пр.                    |

<sup>\* —</sup> М — малая клемная головка Ø 45 мм; Б — большая клемная головка Ø 58 мм. \*\* — Присоединительный хомут в комплект поставки не входит.

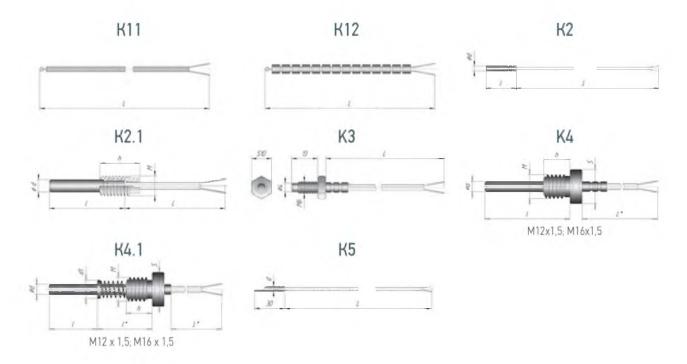
### Термопреобразователи сопротивления с клеммной головкой для специальных применений



| Конструктивное<br>исполнение /<br>Применение                | Клеммная<br>головка | Диаметр<br>монтажной<br>части, мм | Резьбовое<br>соедине-<br>ние, мм | Длина мон-<br>тажной части,<br>мм                                   | нсх             | Класс<br>допуска | Диапазон<br>измеряемой<br>температуры,<br>°С | Время тер-<br>мической<br>реакции, с | Номиналь-<br>ный ток,<br>мА | Схема<br>соеди-<br>нений |
|-------------------------------------------------------------|---------------------|-----------------------------------|----------------------------------|---------------------------------------------------------------------|-----------------|------------------|----------------------------------------------|--------------------------------------|-----------------------------|--------------------------|
| <b>Кл3-2</b><br>Внутри чистых<br>помещений, воз-<br>душный. | Км                  |                                   | -                                | -                                                                   | 50M             | B,C              | -50+50                                       |                                      | 0,2                         |                          |
|                                                             |                     | 65,0                              |                                  |                                                                     | Pt100;<br>Pt100 | В                |                                              | -                                    |                             | 3 пр.                    |
| DIN                                                         |                     | 5,0                               |                                  | 30,0; 60,0; 80,0;<br>100,0; 120,0;<br>160,0; 200,0;<br>250,0; 300,0 |                 | В                | -50+180                                      | 9,0                                  | 0,5                         | 3 пр.                    |
| Внутри оборудования, движущихся агрегатов.                  | DIN                 | 6,0                               | M20x1,5<br>G1/2                  |                                                                     | Pt1000          |                  |                                              | 15,0                                 |                             |                          |
|                                                             |                     | 8,0                               | 01/2                             |                                                                     |                 |                  |                                              | 20,0                                 |                             |                          |

**Пример обозначения: ТСП.Pt100-Kл1-2-B3-5x200 M12x1,5** (тип HCX — Pt100, конструктивное исполнение — Кл1-2 (с подвижным штуцером), Класс допуска - В, схема соединения — трехпроводная, диаметр монтажной части — 5 мм, длина монтажной части — 200 мм, резьбовое соединение — M12x1,5)




### 11.4 Термопреобразователи термоэлектрические

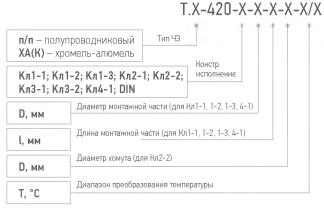


### Описание прибора

Преобразователь термоэлектрический(термопара) состоит из прибора называют холодным спаем. Напряжение с термопары соединения называют рабочим спаем. Место соединения проти- холодного спая и температуры рабочего спая. воположных концов проволок с медным кабелем или клеммами

двух соединенных сваркой проволок разного состава. Место зависит от типа термопары, разницы температур рабочего и

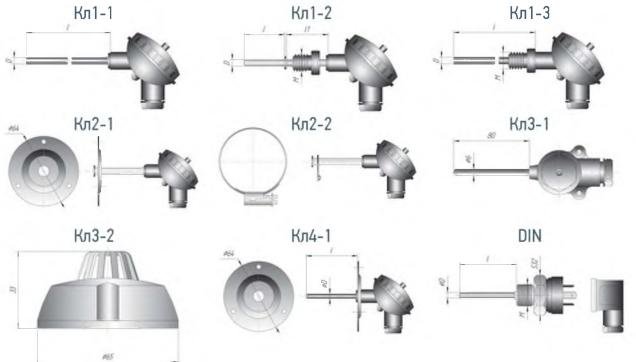



### Технические характеристики

| Кон-<br>струк-<br>тивное<br>исп. | Диаметр<br>термоэ-<br>лектро-<br>дов, мм | Диаметр<br>монтажной<br>части, мм | Изоляция<br>раб. спая,<br>И-золирован,<br>Н-неизолирован | Длина монтаж-<br>ной части, мм          | нсх    | Диапазон<br>измеряемой<br>температуры, С | Время<br>термической<br>реакции, с | Материал изоляции<br>кабеля | Длина<br>кабеля, м         |  |
|----------------------------------|------------------------------------------|-----------------------------------|----------------------------------------------------------|-----------------------------------------|--------|------------------------------------------|------------------------------------|-----------------------------|----------------------------|--|
| К11                              | 0,5; 0,7;<br>1,2                         | -                                 | Н                                                        | -                                       | K<br>L | -40,0+800,0<br>-40,0+600,0               | 1,0                                | Асбостеклонить<br>К11С6     | 0,5; 1,0; 2,0;<br>4,0; 6,0 |  |
| K12                              | 1,2                                      | -                                 | Н                                                        | -                                       | К      | -40,0+1000,0                             | 2,0                                | Керамическая<br>трубка МКРц | 0,5; 1,0; 2,0;<br>4,0; 6,0 |  |
|                                  |                                          |                                   | И                                                        |                                         | K      | -40,0+600,0<br>-40,0+350,0               | 8,0                                |                             |                            |  |
| К2                               | 0,5                                      | 4,0; 5,0                          | Н                                                        | 20,0; 30,0; 60,0;<br>80,0               | K      | -40,0+350,0<br>-40,0+800,0               | 5,0                                | Асбостеклонить<br>К11С6     | 0,5; 1,0; 2,0;<br>4,0; 6,0 |  |
|                                  |                                          |                                   |                                                          |                                         | L<br>K | -40,0+600,0<br>-40,0+350,0               |                                    |                             |                            |  |
| K2.1                             | 0,5                                      | 4,0; 5,0                          | И                                                        | 20,0; 30,0                              | L      | -40,0+350,0<br>-40,0+800,0               | 12,0                               | Асбостеклонить<br>К11С6     | 0,5; 1,0; 2,0;<br>4,0; 6,0 |  |
|                                  |                                          |                                   | Н                                                        |                                         | L      | -40,0+600,0<br>-40,0+350,0               | 8,0                                |                             |                            |  |
| K3                               | 0,5                                      | 4,0                               | И                                                        | 13,0                                    | L      | -40,0+350,0                              | 20,0                               | Асбостеклонить<br>К11С6     | 0,5; 1,0; 2,0;<br>4,0; 6,0 |  |
|                                  |                                          |                                   | Н                                                        |                                         | K<br>L | -40,0+800,0<br>-40,0+600,0               | 14,0                               | MICO                        |                            |  |
| К4                               | 0,5; 0,7                                 | 4,0; 5,0; 6,0                     | И                                                        | 10,0; 20,0; 30,0;<br>60,0; 80,0; 100,0; | K      | -40,0+350,0<br>-40,0+350,0               | 20,0                               | Асбостеклонить              | 0,5; 1,0; 2,0;             |  |
| 114                              | 0,3,0,7                                  | 4,0; 3,0; 0,0                     | Н                                                        | 120,0; 200,0; 250,0<br>320,0            | K      | -40,0+800,0<br>-40,0+600,0               | 12,0                               | K11C6                       | 4,0; 6,0                   |  |
|                                  |                                          |                                   | И                                                        | 10,0; 20,0; 30,0;<br>60,0; 80,0; 100,0; | K      | -40,0+350,0<br>-40,0+350,0               | 20,0                               | Асбостеклонить              | 0.5, 1.0, 2.0,             |  |
| K4.1                             | 0,5; 0,7                                 | 4,0; 5,0; 6,0                     | Н                                                        | 120,0; 200,0; 250,0; 320,0              | K      | -40,0+800,0<br>-40,0+600,0               | 12,0                               | К11С6                       | 0,5; 1,0; 2,0;<br>4,0; 6,0 |  |
|                                  |                                          |                                   | И                                                        |                                         | K      | -40,0+350,0                              | 8,0                                |                             |                            |  |
| К5                               | 0,5                                      | 4,0                               | Н                                                        | 30,0                                    | K      | -40,0+350,0<br>-40,0+800,0               | 5,0                                | Асбостеклонить<br>К11С6     | 0,5; 1,0; 2,0;<br>4,0; 6,0 |  |
|                                  |                                          |                                   |                                                          |                                         | L      | -40,0+600,0                              |                                    |                             |                            |  |

Класс допуска – 2

**Пример обозначения: ТП.ХК(L)-К5-И.0,5-5х30х1,0-2** (тип HCX – ХК(L), конструктивное исполнение – К5, изоляция рабочего пая – изолированный, диаметр термоэлектродов – 0,5 мм, диаметр монтажной части – 5 мм, длина монтажной части – 30 мм, длина кабеля – 1,0 м)


# 11.5 Термопреобразователи с токовым выходным сигналом 4...20 мА



### Описание прибора

Датчик температуры с токовым выходным сигналом состоит из термопреобразователя (первичного преобразователя) и электронного блока преобразования сигнала с термочувствительного элемента в унифицированный токовый сигнал 4...20 мА (вторичного преобразователя).





 $(l-l_{\downarrow})$  — зона действия рабочей температуры

| Конструктивное<br>исполнение /                                                                                  | Клеммная | Диаметр<br>монтажной | Резьбовое     | Длина монтаж-                       | Диапазон преобра | зования температуры, °С        | Класс       |  |
|-----------------------------------------------------------------------------------------------------------------|----------|----------------------|---------------|-------------------------------------|------------------|--------------------------------|-------------|--|
| применение                                                                                                      | головка  | части, мм            | соединение    | ной части, мм                       | 4 мА             | 20 mA                          | точности, 9 |  |
|                                                                                                                 |          |                      |               |                                     | -40              | +125                           |             |  |
|                                                                                                                 |          |                      |               |                                     | -40              | +100                           |             |  |
| Кл1-1                                                                                                           | Г        | 5,0; 6,0; 8,0;       |               | 60; 80; 100; 120;                   | 0                | +100                           | 0.5         |  |
| погружной                                                                                                       | Б        | 10,0                 |               | 160; 200; 250;<br>300               | 0                | +300 (l <sub>1</sub> ≥ 30)     | 0,5         |  |
|                                                                                                                 |          |                      |               |                                     | 0                | +500 (l <sub>1</sub> ≥ 120)    |             |  |
|                                                                                                                 |          |                      |               |                                     | 0                | +800 (l <sub>1</sub> ≥ 120)    |             |  |
|                                                                                                                 |          |                      |               |                                     | -40              | +125                           |             |  |
|                                                                                                                 |          | 5,0                  | M12x1,5       |                                     | -40              | +100                           |             |  |
| Кл1-2                                                                                                           | _        |                      |               | 30; 60; 80; 100;                    | 0                | +100                           | 0,5         |  |
| погружной                                                                                                       | Б        | 6,0                  | M16x1,5       | 120; 160; 200;<br>250; 300          | 0                | +300 (l <sub>1</sub> =30; 120) |             |  |
|                                                                                                                 |          |                      |               |                                     | 0                | +500 (l <sub>1</sub> = 120)    |             |  |
|                                                                                                                 |          | 8,0; 10,0            | M20x1,5; G1/2 |                                     | 0                | +800 (l <sub>1</sub> = 120)    |             |  |
|                                                                                                                 |          | 5,0                  | M12x1,5       | /0.00.100.100                       | -40              | +125                           |             |  |
| Кл1-3                                                                                                           | Б        | 6,0                  | M16x1,5       | 60; 80; 100; 120;<br>160; 200; 250; | -40              | +100                           | 0,5         |  |
| погружной п |          | 8,0; 10,0            | M20x1,5; G1/2 | 300                                 | 0                | +100                           |             |  |
|                                                                                                                 |          |                      |               |                                     | -40              | +125                           |             |  |
| Кл2-1                                                                                                           | Б        | Б 65,0               | _             | _                                   | -40              | +100                           | 0,5         |  |
| поверхностный                                                                                                   | Б        |                      |               |                                     | 0                | +100                           | 0,5         |  |
|                                                                                                                 |          |                      |               |                                     | -40              | +125                           |             |  |
| Кл2-2                                                                                                           | Б        | _                    | _             | _                                   | -40              | +100                           | 0,5         |  |
| поверхностный                                                                                                   | Б        |                      |               |                                     | 0                | +100                           | 0,0         |  |
| <b>Кл3-1</b><br>уличный<br>воздушный                                                                            | у        | 6,0                  | -             | 80                                  | -40              | +80                            | 0,5         |  |
| √л3-2                                                                                                           |          |                      |               |                                     | -40              | +50                            |             |  |
| для чистых<br>помещений<br>воздушный                                                                            | К        | 65,0                 | -             | -                                   | 0                | +50                            | 0,5         |  |
| Кл4-1                                                                                                           |          |                      |               |                                     | -40              | +80                            |             |  |
| для систем<br>вентиляции<br>и кондиц-ия                                                                         | Б        | 5,0                  | -             | 100; 200                            | -40              | +125                           | 0,5         |  |
|                                                                                                                 |          |                      |               |                                     | -40              | +125                           |             |  |
|                                                                                                                 |          |                      |               |                                     | -40              | +100                           |             |  |
| DIN                                                                                                             | DIN      | F0 /0 00             | NOO 15 01/2   | 60; 80; 100; 120;                   | 0                | +100                           | 0.5         |  |
| для установки<br>в оборудование                                                                                 | DIN      | 5,0; 6,0; 8,0        | M20x1,5; G1/2 | 160; 200; 250;<br>300               | 0                | +300                           | 0,5         |  |
| в ооорудование                                                                                                  |          |                      |               | 550                                 | 0                | +500 (l <sub>1</sub> ≥ 120)    |             |  |
|                                                                                                                 |          |                      |               |                                     | 0                | +800 (l <sub>1</sub> ≥ 120)    |             |  |

### 11.6 Преобразователи аналоговых сигналов ПАС-01

Предназначены для подключения первичных преобразователей (датчиков) к цифровым сетям передачи данных RS485 и Ethernet.

# Преобразователь для сети RS485 с протоколом Modbus

#### ΠAC-01-RS-X-X



- Цифровая фильтрация измеренных параметров от промышленных импульсных помех;
- Коррекция измеренных параметров для устранения погрешности первичного преобразователя;
- Формирование аварийного сигнала при обнаружении неисправности первичного преобразователя;
- Высокая точность преобразования сигнала;
- Простой и понятный интерфейс пользователя.
- Универсальный вход для подключения датчиков и униф. сигналов.
- Опция двухпозиционного регулятора.

# Преобразователь для сети Ethernet (стандарт IEE802.3x)

ПАС-01-E-X-X-X







### Описание прибора

#### ΠAC-01-RS

Применяется в качестве подчиненного устройства в промышленных сетях с протоколом Modbus. Модуль ввода-вывода имеет два конструктивных исполнения, что существенно расширяет область его применения:

ПАС-01-RS-H — имеет герметичный корпус и три гермоввода для подключения прибора в разрыв сети RS485 и для подключения к нему датчика. Может устанавливаться непосредственно около датчика для подключения его к общей сети сбора данных.

ПАС-01-RS-Д – имеет малогабаритный корпус с креплением на ДИН-рейку и предназначен для установки в шкафу управления и автоматики

Прибор имеет дополнительную опцию (только для исп. H):

• P – работа в режиме регулятора с симисторно-релейным выходом (уставки задаются через программу-конфигуратор).

#### ПАС-01-Е

Предназначен для преобразования сигналов, поступающих с первичных преобразователей в цифровой сигнал стандарта IEEE 802.3х (Ethernet) с целью подключения практически любого датчика к локальным сетям, а также к Интернет. Прибор имеет также вход RS485 Modbus, который может быть использован для конфигурирования прибора в сети. На программном уровне выполнена поддержка стека TCP/IP с реализацией следующих прикладных протоколов: ICMP (ping-запросы), Modbus TCP/IP (Modbus-сервер), DNS-клиент, SMTP (отправка почтовых сообщений), POP3 (получение почты — запросов), NTP (синхронизация системного времени).

Прибор имеет несколько дополнительных опций:

- Р работа в режиме регулятора с симисторно-релейным выходом (уставки задаются через программу-конфигуратор);
- А электронный архив с двумя режимами архивации данных: до заполнения или циклический с возможностью отправки архива по электронной почте или получения через программу-конфигуратор:
- И индикатор показаний измеренных значений и времени на жк-индикаторе прибора.

Имеется функция почтового оповещения на три заданных почтовых электронных адреса.

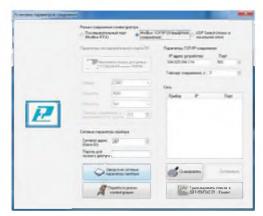
### Технические характеристики

| Напряжение питания                                                     | 9 30 В (ПАС-01-RS); 22 26 В (ПАС-01-E)                                     |
|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Период опроса датчика                                                  | 0,330,0 сек (ПАС-01-RS); 1 сек 24 ч (ПАС-01-Е)                             |
| Коммутируемые ток и напряжение и кол-во коммутируемых циклов (опция Р) | AC 250 B, 2 A, 50000 циклов                                                |
| Объем архива (опция А)                                                 | 6600 значений (ПАС-01-Е)                                                   |
| Скорость обмена                                                        | до 115 Kb/c (ПАС-01-RS); 10 Mb/c (ПАС-01-E)                                |
| Потребляемая мощность                                                  | 2 Вт                                                                       |
| Время преобразования АЦП                                               | не более 0,3 сек                                                           |
| Цифровая фильтрация измеряемых параметров:                             | <ul><li>постоянная времени: 010</li><li>полоса фильтра: 0999,9</li></ul>   |
| Средняя наработка на отказ                                             | не менее 30000 ч                                                           |
| Габаритные размеры/степень защиты корпуса                              | 90x55x25 мм/IP44 (ПАС-01-RS-H, ПАС-01-E)<br>64x51x27 мм/IP20 (ПАС-01-RS-Д) |
| Macca                                                                  | не более 0,16 кг (ПАС-01-RS-H, ПАС-01-E)<br>не более 0,06 кг (ПАС-01-RS-Д) |

| Наименование датчика и НСХ                | Диапазон измерения, °С | Отн. погрешность<br>преобразователя | Разрешающая способность |
|-------------------------------------------|------------------------|-------------------------------------|-------------------------|
| TCM.50M                                   | -180+200               | ±0,25 %                             | 0,1 °C                  |
| TCM.100M                                  | -180+200               | ±0,25 %                             | 0,1 °C                  |
| ТСП.50П                                   | -200+850               | ±0,25 %                             | 0,1 °C                  |
| ТСП.100П                                  | -200+850               | ±0,25 %                             | 0,1 °C                  |
| TCΠ.Pt100                                 | -200+850               | ±0,25 %                             | 0,1 °C                  |
| TCΠ.Pt1000                                | -200+850               | ±0,25 %                             | 0,1 °C                  |
| TXK(L)                                    | -200+850               | ±0,5 °C                             | 0,1 °C                  |
| TXA(K)                                    | -200+1300              | ±0,5 °C                             | 0,1 °C                  |
| TNN(S)                                    | -50+1700               | ±0,5 °C                             | 0,1 °C                  |
| TΠΠ(R)                                    | -50+1700               | ±0,5 °C                             | 0,1 °C                  |
| 05 мА; 020 мА; 420 мА;<br>-50+50 мВ; 01 В | 0100 %                 | ±0,25 %                             | 0,1 %                   |

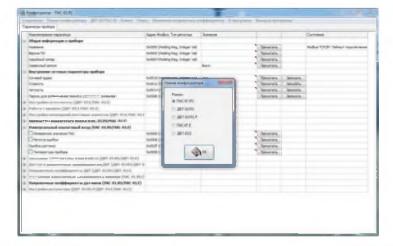
Симисторно-релейный модуль в приборе с опцией Р позволяет на месте осуществлять функцию двухпозиционного двухканального регулятора. Например, при подключении к преобразователю датчика температуры-влажности с токовым выходом прибор может на месте управлять нагревателем и парогенератором. Уставки регулирования задаются из ПО. Там же можно видеть положения контактов реле модуля.

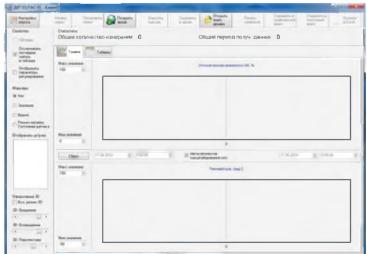
### Программа-конфигуратор «ПАС-ДВТ»


С приборами поставляется программа-конфигуратор «ПАС-ДВТ», при помощи которой можно не только производить поиск, регистрацию и конфигурирование приборов в сети, но также регистрировать данные измерений с представлением информации в виде таблицы и графика. Программа - конфигуратор ПАС-ДВТ постоянно совершенствуется и распространяется бесплатно.

### Программа обеспечивает задание следующих параметров:

- адрес прибора в сети;
- скорость обмена;
- тип подключенного к прибору датчика;
- период опроса датчика;
- параметры цифровой фильтрации;
- нижнюю и верхнюю границу измеряемого параметра (масштабирование для датчиков токовых сигналов и сигналов напряжения);
- сдвиг температуры холодного спая при работе с термоэлектрическими преобразователями (термопарами);
- задание уставок регулирования для приборов, имеющих опцию «Р»;
- задание адресов электронной почты для отправки сообщений и архива значений (для ПАС-01-Е);
- включение-выключение контактов реле для приборов, имеющих опцию «Р»;
- задание параметров для работы с FTР-сервером.


#### Возможности программы:


- индикация измеряемых параметров в режиме online;
- архивирование измеряемых парметров;
- представление данных в виде таблицы и удаленное управление регулятором с графика, экспорт данных в Excel;
- получение данных о неисправностях, данных архива из памяти прибора;
- возможностью ручного управления реле.



- Установка параметров соединения 🔺
  - Режим конфигуратора •

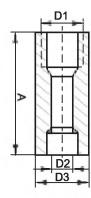
Представление данных в виде графика или таблицы 🕨





# 11.7 Арматура для подключения термопреобразователей

Арматура предназначена для присоединения термопреобразователей сопротивления и термопар к трубам, воздуховодам, различным емкостям.

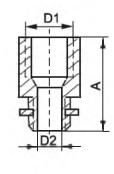

#### 1. Бобышка Б1

Предназначена для присоединения термопреобразователей к трубам, емкостям и т.д.

Материал: сталь 3 (10).

| Обозначение при заказе | D1, мм  | D2, мм | D3, мм | А, мм |
|------------------------|---------|--------|--------|-------|
| Б1.М12                 | M12x1,5 | 7      | 18     | 30    |
| Б1.М16                 | M16x1,5 | 10     | 24     | 32    |
| Б1.M20                 | M20x1,5 | 14     | 28     | 34    |



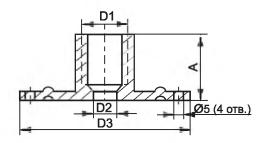



#### 2. Бобышка Б2

Предназначена для присоединения термопреобразователей к воздуховодам и т.д. Материал: сталь 3 (10).

| Обозначение при заказе | D1, мм  | D2, мм | А, мм |
|------------------------|---------|--------|-------|
| Б2.М12                 | M12x1,5 | 8      | 28    |
| Б2.М16                 | M16x1,5 | 10     | 30    |
| Б2.М20                 | M20x1,5 | 14     | 32    |





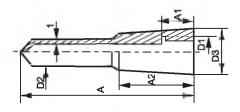

### 3. Бобышка Б3

86

Предназначена для присоединения термопреобразователей к трубам, емкостям и т.д. Материал: сталь 3 (10).

| Обозначение при заказе | D1, мм  | D2, мм | D3, мм | А, мм |
|------------------------|---------|--------|--------|-------|
| Б3.М12                 | M12x1,5 | 8      | 65     | 18    |
| Б3.М16                 | M16x1,5 | 10     | 65     | 20    |
| Б3.М20                 | M20x1,5 | 14     | 65     | 22    |



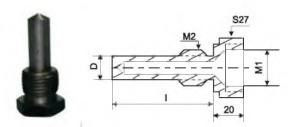

### 4. Гильза защитная Гз1

Предназначена для присоединения термопреобразователей к трубам, емкостям и т.д.

Материал: сталь 3 (10).

| Обозначение<br>при заказе | Длина защитного чехла<br>термопреобразователя<br>l, мм | D1, мм  | D2, мм | D3, мм | А, мм | А1, мм | А2, мм |
|---------------------------|--------------------------------------------------------|---------|--------|--------|-------|--------|--------|
| Гз1.М8.І                  | 30; 60; 80; 100; 120                                   | M8x1    | 8      | 11     | l+12  | 8      | 20     |
| Гз1.М12.l                 | 30; 60; 80; 100; 120                                   | M12x1,5 | 9      | 15     | l+18  | 14     | 20     |
| Гз1.М16.l                 | 60; 80; 100; 120                                       | M16x1,5 | 10     | 20     | l+20  | 16     | 55     |
| Гз1.М20.І                 | 60; 80; 100; 120; 160;<br>200                          | M20x1,5 | 14     | 28     | l+21  | 18     | 65     |



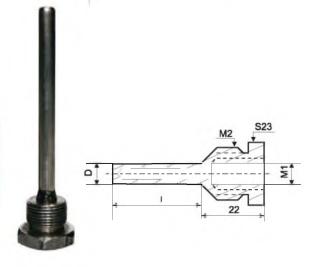



#### 5. Гильза защитная Гз2

Предназначена для присоединения термопреобразователей к трубам, емкостям снабженным штуцером с внутренней резьбой соответствующего размера.

Материал: сталь 3 (10).

| Обозначение<br>при заказе | Длина монтажной<br>части термопреоб-<br>разователя l, мм | D, мм | М1, мм            | М2, мм            |
|---------------------------|----------------------------------------------------------|-------|-------------------|-------------------|
| Гз2.М1/М2.l               | 60; 80; 120                                              | 16x2  | M20x1,5,<br>Cτ1/2 | M20x1,5,<br>Ст1/2 |




### 6. Гильза защитная Гз3

Предназначена для присоединения термопреобразователей к трубам, емкостям снабженным штуцером с внутренней резьбой соответствующего размера.

Материал: сталь 3 (10).

| Обозначение при<br>заказе | Длина монтажной<br>части термопреоб-<br>разователя l, мм | D, мм  | М1, мм  | М2, мм            |
|---------------------------|----------------------------------------------------------|--------|---------|-------------------|
| Гз3.М1/М2.l               | 30; 60; 80                                               | 10x1,5 | M12x1,5 | M20x1,5,<br>Ст1/2 |



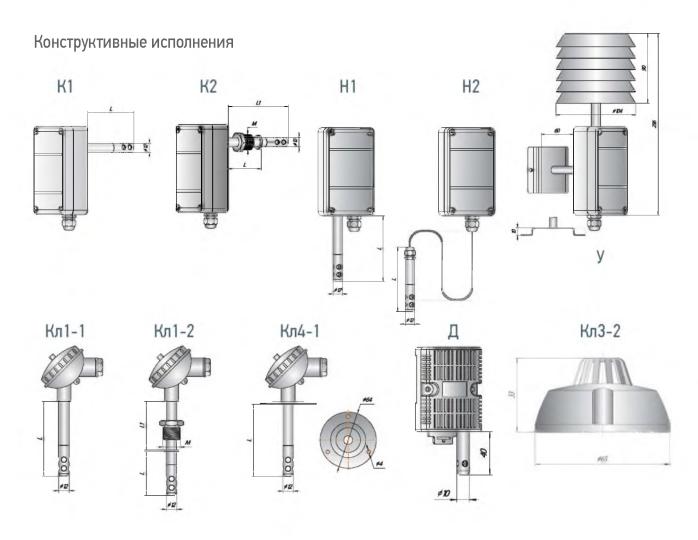
## 12.1 Датчики влажности и температуры ДВТ-03

Датчики влажности и температуры ДВТ-03 предназначены для измерения относительной влажности и температуры воздуха и неагрессивных газов в производственных, складских и бытовых помещениях, а также в свободной атмосфере.



### Описание приборов

ДВТ-03 - это современные высококачественные приборы, в которых используются цифровые взаимозаменяемые сенсоры температуры и влажности емкостного типа. При выходе из строя сенсора его можно заменить без необходимости дополнительной юстировки датчика. Тип используемого сенсора определяет технические параметры и класс точности прибора. Датчики влажности различаются по типу выходного сигнала:


- ДВТ-03.Т и ДВТ-03.Т3 два токовых 4...20 мА;
- **ДВТ-03.RS** цифровой RS485 Modbus;
- ДВТ-03.E цифровой Ethernet.

Некоторые типы датчиков снабжены дополнительными опциями: индикатором текущих значений, электронным архивом, встроенным регулятором. Имеется широкий ассортимент конструктивных исполнений, определяющих область применения датчиков: для использования вне здания, для установки на стену, воздухопровод, в термокамеру, для применения внутри бытовых и офисных помещений, для установки на ДИН-рейку внутри шкафов управления и автоматики и т.д.

Все датчики ДВТ-03 имеют диапазон измерения относительной влажности: 0...98%.

Диапазон измерения температуры максимальный составляет: -40...+100 °С и сильно зависит от относительной влажности контролируемой среды. Для датчиков, в которых первичный преобразователь (сенсор) находится в непосредственной близости от корпуса, диапазон измерения ограничивается температурой эксплуатации датчика.

Датчики ДВТ-03 имеют встроенную защиту от конденсации влаги на сенсоре. При относительной влажности выше 95 % автоматически включается нагрев микронагревателя сенсора, обеспечивающего повышение температуры сенсора примерно на 5 °С выше температуры окружающей среды. При этом относительная влажность вблизи сенсора уменьшается и предотвращается конденсация влаги.



### Основные исполнения ДВТ-03

| Nº<br>п/п | Основное<br>исполнение | Выходной<br>сигнал       | Возможности                                                                                                                                           | Доп. опции                                                                         | Конструктивные<br>исполнения                        | Исполнения по<br>точности |
|-----------|------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|
| 1         | ДВТ-03.ТЭ              | 2*420 мА                 | -                                                                                                                                                     | -                                                                                  | Н1, Н2, К1, К2, У, Кл1-1,<br>Кл1-2, Кл4-1, Д, Кл3-2 | 2, 3                      |
| 2         | ДВТ-03.Т               | 2*420 мА                 | • Светодиодный индикатор, индикация температуры точки росы                                                                                            | -                                                                                  | H1, H2, K1, K2, Y                                   | 1, 2                      |
| 3         | ДВТ-03.RS              | RS485 Modbus             | • Программа конфигуратор с возможностью работы с данными                                                                                              | P – регулирование по<br>двухпозиционному<br>закону                                 | H1, H2, K1, K2, Y                                   | 1, 2                      |
| 4         | ДВТ-03.Е               | Ethernet<br>(IEE 802.3X) | <ul> <li>Modbus TCP/IP</li> <li>DNS клиент</li> <li>SMTP,P0P3</li> <li>NTP</li> <li>Программа конфигуратор с возможностью работы с данными</li> </ul> | Р — регулирование по ухпозиционному закону А — электронный архив И — Ж/к-индикатор | Н1, Н2, К1, К2, У                                   | 1, 2                      |

| Напряжение питания                                | 1836 В (ДВТ-03.Т3, ДВТ-03.Т)<br>я 2226 В (ДВТ-03.E)<br>10 36 В (ДВТ-03.RS)                                                                                                                            |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| диапазон измерения относительной влажности        | 098 %                                                                                                                                                                                                 |
| Диапазон измерения температуры                    | -40+50 °C (H1, У)<br>-40+100 °C (H2, К1, К2, Кл1-1, Кл1-2, Кл4-1)<br>-20+50 °C (Д)<br>0+50 °C (Кл3-2)                                                                                                 |
| Диапазон температуры эксплуатации                 | -40+50 °C (H1, H2, K1, K2, У, Кл1-1, Кл1-2, Кл4-1)<br>-20+50 °C (Д)<br>0+50 °C (Кл3-2)                                                                                                                |
| Степень защиты корпуса первичного преобразователя | IP50 (H1, H2, K1, K2, Кл1-1, Кл1-2, Кл4-1)<br>IP53 (У)<br>IP40 (Д, Кл3-2)                                                                                                                             |
| Степень защиты корпуса вторичного преобразователя | IP54 (H1, H2, K1, K2, У, Кл1-1, Кл1-2, Кл4-1)<br>IP40 (Д, Кл3-2)                                                                                                                                      |
| Габаритные размеры первичного преобразователя     | Ø 12 мм, l=160 мм (H1, H2)<br>Ø 12 мм, l=160, 200, 300 мм (K1, K2)<br>Ø 100 мм, l=100 мм (У)<br>Ø 12 мм, l=80, 200, 300 мм (Кл1-1, Кл1-2, Кл4-1)<br>Ø 10 мм, l= 30 мм (Д)<br>Ø 25 мм, h=15 мм (Кл3-2) |
| Габаритные размеры вторичного преобразователя     | 115x65x40 мм (H1, H2, K1, K2, У)<br>75x65x65 (Кл1-1, Кл1-2, Кл4-1)<br>65x45x29 (Д)<br>Ø 65 мм, h=20 мм (Кл3-2)                                                                                        |

#### Абсолютная погрешность в зависимости от исполнения по точности измерения

| Измеряемая величина                               | Абсолютная<br>погрешность (исп. 1) | Абсолютная<br>погрешность (исп. 2) | Абсолютная<br>погрешность (исп. 3) |
|---------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Относительная влажность в диапазоне 1090 %        | ±2,0 %                             | ±3,0 %                             | ±4,5 %                             |
| Относительная влажность в диапазоне 010 %, 9098 % | ±3,0 %                             | ±4,0 %                             | ±7,5 %                             |
| Температура в диапазоне -10+60 °С                 | ±1,0 °C                            | ±1,5 °C                            | ±2,0 °C                            |
| Температура в диапазоне -4010 °C, +60+100 °C      | ±1,5 °C                            | ±2,5 °C                            | ±3,0 °C                            |

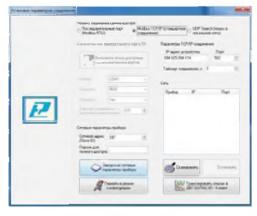
Для контроля абсолютной погрешности датчика непосредственно на объекте, где он установлен можно использовать набор для юстировки, включающий в себя набор определенных солей, расфасованных в специальные емкости с заданным размером горловины. Для контроля погрешности необходимо снять с датчика защитный колпачок, при помощи пипетки смочить соль в одной из емкостей, надеть емкость на первичный преобразователь датчика вместо защитного колпачка. Через 0,5...2,0 часа в емкости будет создана определенная влажность, соответствующая табличному значению.

### Программа конфигуратор ПАС-ДВТ

производителя www.relsib.com, предоставляется бесплатно и предназначена для поиска и настройки датчиков ДВТ-03.RS и ДВТ-03.Е, находящихся в сети, а также для получения данных, визуализации их в виде таблиц и графиков, экспорта данных в формате Excel.

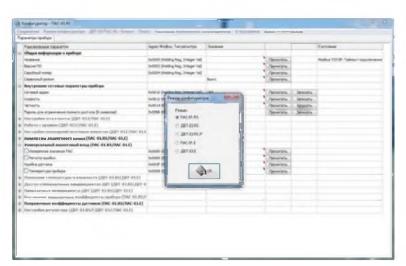
Программа ПАС-ДВТ размещена на сайте Программа позволяет задать сетевой адрес и имя датчика, установить необходимую скорость обмена и период опроса датчика. При помощи ПО ПАС-ДВТ можно произвести юстировку датчика по двум точкам, задать уставки регулирования для датчика, снабженного регулятором, отследить состояние контактов э/м реле регулятора. При помощи программы ПАС-ДВТ можно легко настроить датчик с выходом Ethernet для работы с архивом и электронной почтой.

### Программа-конфигуратор обеспечивает:


- задание сетевого адреса 1...247;
- задание скорости обмена от 1200 до 115200 бит/с;
- задание параметров цифрового фильтра;
- задание периода опроса датчиков в сети от 1 сек;
- контроль целостности датчика и сети;
- юстировку каждого датчика в сети по двум точкам;
- регистрацию параметров в виде таблицы и графика.

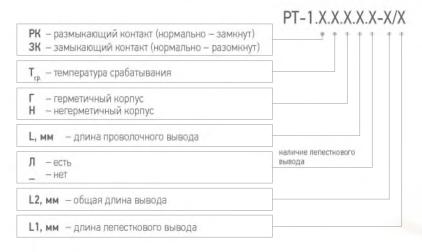
### Дополнительные возможности ПО для ДВТ-03 с опцией Р:

- задание уставок регулирования для каждого датчика;
- индикацию состояния выходных реле;
- задание реверса релейного выхода.


### Для ДВТ-03.Е.А:

• работа с архивом.




Установка параметров соединения 🔺

Режим конфигуратора ▶



### 13.1.1 Реле температурное РТ-1

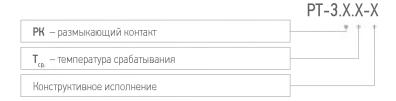
Реле температурное с самовозвратом РТ-1 предназначено для эксплуатации в качестве встроенного элемента внутри тепловых и других, в том числе комбинированных пожарных извещателей, а также для работы в изделиях электротехнических для поддержания температуры и температурной защиты.



- Миниатюрный корпус;
- Сверхнизкая инерционность;
- Небольшой гистерезис;
- Высокая надежность.






#### Описание прибора

В качестве чувствительного элемента в реле используется материал с «памятью формы», изготовленный по специальной технологии. При повышении температуры окружающей среды (до температуры срабатывания реле), чувствительный элемент (1) изменяет форму и воздействует на контактную пружину (2), в результате чего происходит размыкание (замыкание) контактов. При понижении температуры окружающей среды контакты реле возвращаются в исходное положение.

| Номинальное/предельное коммутируемое напряжение                                                                           | 24/40 B                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Номинальный/предельный коммутируемый ток                                                                                  | 30/100 MA                                                                                                                                                                                      |
| Температура срабатывания                                                                                                  | +50; 60; 62; 65; 70; 80 °C                                                                                                                                                                     |
| Пределы допускаемых отклонений                                                                                            | ±2; 3; 5; 10 °C (±5 °C – стандартное)                                                                                                                                                          |
| Гистерезис температурный                                                                                                  | (4,5±2,5) °C                                                                                                                                                                                   |
| Показатель тепловой инерции                                                                                               | не более 3 сек                                                                                                                                                                                 |
| Полное сопротивление контактной цепи при замкнутых контактах, в процессе эксплуатации в нормальных климатических условиях | не более 1,0 Ом                                                                                                                                                                                |
| Максимальная допустимая температура окружающей среды                                                                      | +140 °C                                                                                                                                                                                        |
| Климатическое исполнение                                                                                                  | УХЛ 3.1 по ГОСТ 15150-69                                                                                                                                                                       |
| Условия эксплуатации:                                                                                                     | <ul> <li>Температура окружающей среды -60+125 °C</li> <li>Относительная влажность до 98% при температуре 25 °C без конденсации влаги</li> <li>Атмосферное давление (84,0-106,7) кПа</li> </ul> |
| Габаритные размеры:                                                                                                       | <ul> <li>Корпус: Ø 3 мм, l=8 мм</li> <li>Проволочные выводы: Ø 0,3 мм, l = 10; 20 мм</li> <li>Лепестковых выводы: l = 25; 33,5 мм (под винт М3)</li> </ul>                                     |
| Macca                                                                                                                     | не более 0,15 г                                                                                                                                                                                |
| Средний срок службы                                                                                                       | 10 лет                                                                                                                                                                                         |

# 13.1.2 Реле температурное РТ-3

Реле температурное PT-3 предназначено для сигнализации и защиты от перегрева различного оборудования, в том числе электродвигателей, насосов, электрических и других тепловых котлов и т.д.



### Описание прибора

Реле изготовлено в герметичном корпусе из нержавеющей стали с резьбовым соединением.

Подключение реле осуществляется через соединитель DIN43650.

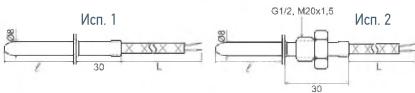
Принцип действия реле PT-3 основан на скачкообразной деформации диска из термобиметалла при достижении определенной температуры (температуры срабатывания).




| Внешний вид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Конструктивное<br>исполнение | М        | L <sub>1</sub> , мм | L <sub>2</sub> , мм |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|---------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01                           | G 1/4    | 20                  | 40                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02                           | G 1/4    | 30                  | 50                  |
| , in the second | 03                           | G ½      | 20                  | 40                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04                           | G ½      | 30                  | 50                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05                           | G 3/4    | 20                  | 40                  |
| - K K S32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06                           | G 3/4    | 30                  | 50                  |
| 29 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07                           | M 20x1,5 | 20                  | 40                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08                           | M 20x1,5 | 30                  | 50                  |

| Номинальное напряжение                       | до 250 В 50 Гц                         |
|----------------------------------------------|----------------------------------------|
| Номинальный ток                              | 1,6 А при соsφ=0,6<br>2,5 А при соsφ=1 |
| Количество коммутационных циклов, не менее   | 10000                                  |
| Максимальный ток                             | 4,0 А для 100 циклов                   |
| Температура срабатывания (из диапазона)      | 65130 °C                               |
| Погрешность по температуре срабатывания      | ±5 °C                                  |
| Гистерезис                                   | 1545 °C                                |
| Напряжение пробоя в течение 1 мин.           | не менее 2000 В 50 Гц                  |
| Степень защиты корпуса                       | IP65                                   |
| Максимальное давление в контролируемой среде | 4 МПа                                  |
| Macca                                        | не более 0,25 кг                       |
| Средний срок службы                          | 10 лет                                 |

## 13.1.3 Реле температурные РТ-4 и РТ-5


Реле температуры предназначено для контроля, сигнализация о превышении температуры.





### Описание прибора

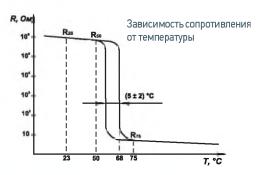
Термореле изготавливаются в корпусе из нержавеющей стали. Термореле РТ-4 устойчиво к ударам и вибрации. Благодаря небольшому диаметру зонда реле имеет низкую тепловую инерционность. Благодаря маленькому гистерезису реле РТ-5 можно использовать для поддержания температуры (как термостат).



|                                                   | PT-4                       | PT-5                       |
|---------------------------------------------------|----------------------------|----------------------------|
| Коммутируемое напряжение                          | =24 B; ≈250 B              | =24 B; ≈120 B              |
| Коммутируемый ток                                 | 3 A                        | 1 A                        |
| Температура срабатывания                          | -45+120 °С (с шагом 10 °С) | -20+200 °С (с шагом 10 °С) |
| Погрешность (разброс по температуре срабатывания) | ±5 °C                      | ±5 ℃                       |
| Гистерезис                                        | 1040 °C                    | 15 °C                      |
| Количество коммутационных циклов                  | не менее 10000             | не менее 50000             |
| Максимальное давление в контролируемой среде      | 1,6 МПа                    | 1,6 МПа                    |
| Материал защитной арматуры                        | 12X18H10T или SUS304       | 12X18H10T или SUS304       |
| Длина монтажной части                             | 20; 30; 60; 80; 100 мм     | 20; 30; 60; 80; 100 мм     |
| Длина кабеля                                      | 0,2; 0,5; 1,0; 2,0 м       | 0,2; 0,5; 1,0; 2,0 м       |
| Средняя наработка на отказ                        | не менее 50000 ч           | не менее 50000 ч           |
| Средний срок службы                               | 5 лет                      | 5 лет                      |
| Macca                                             | не более 0,25 кг           | не более 0,25 кг           |

## 13.2.1 Терморезистор прямого подогрева ТРП68-01

Предназначены для эксплуатации в качестве встроенных элементов внутри тепловых и других, в том числе комбинированных пожарных извещателей, а также для работы в изделиях электротехнических для поддержания температуры и температурной защиты. Терморезисторы имеют релейную (пороговую) зависимость сопротивления от температуры.




- Гистерезис менее 7 °C
- Высокая надежность



### Описание прибора

В качестве термочувствительного элемента в терморезисторе используется пленка из двуокиси ванадия (V02) — соединения, обладающего фазовым переходом металл-полупроводник (ФПМП). При температуре ниже температуры ФПМП (68 °C) зависимость сопротивления терморезистора от температуры характерна для полупроводниковых материалов с температурным коэффициентом сопротивления (ТКС) около 3 % К<sup>-1</sup>. Вблизи температуры ФПМП сопротивление терморезистора уменьшается скачкообразно, при этом ТКС достигает величины 2000 % К<sup>-1</sup>. При температуре выше температуры ФПМП сопротивление практически не изменяется.



| Температура срабатывания                                                             | (68±1) °C                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Гистерезис температурный (зона неопределенности)                                     | (5±2) °C                                                                                                                                                                                                   |
| Тепловая постоянная времени                                                          | не более 4 сек                                                                                                                                                                                             |
| Сопротивление терморезистора*:                                                       | • при +(23±3) °C, $R_{23}$ – не менее 1000 кОм<br>• при +(50±1) °C, $R_{50}$ – не менее 250 кОм ( $R_{50}$ ≥0,25 $R_{23}$ )<br>• при +(75±1) °C, $R_{75}$ – не более 0,2 кОм ( $R_{75}$ ≤0,0002 $R_{23}$ ) |
| Предельное рабочее напряжение                                                        | 36 B                                                                                                                                                                                                       |
| Макс. мощность рассеяния терморезистора в диапазоне температур окр. среды:           | в диапазоне -50+60 °C: 60 мВт; в диапазоне -51+80 °C: 40 мВт                                                                                                                                               |
| Коэффициент рассеяния мощности терморезистора при температуре окр. среды +(25±10) °C | не менее 1,5 мВт/ °С                                                                                                                                                                                       |
| Макс. допустимая температура окр. среды                                              | +140 °C                                                                                                                                                                                                    |
| Средняя наработка до отказа                                                          | 150000 ч                                                                                                                                                                                                   |
| Габаритные размеры:                                                                  | <ul> <li>корпуса: Ø 4,8 мм, l=5 мм</li> <li>проволочных выводов: Ø 0,5 мм, l=13,5; 23 мм</li> <li>лепестковых выводов: l=25; 33,5 мм (под винт М3)</li> </ul>                                              |
| Macca                                                                                | не более 0,15 г                                                                                                                                                                                            |
| Климатическое исполнение                                                             | УХЛ 3.1 по ГОСТ 15150-69                                                                                                                                                                                   |
| Условия эксплуатации:                                                                | <ul> <li>температура окружающей среды: -50_+125 °C</li> <li>относительная влажность: (45-80) %</li> <li>атмосферное давление: (84,0-106,7) кПа</li> </ul>                                                  |

<sup>\* -</sup> по согласованию с заказчиком допускаются другие значения сопротивления терморезистора, при этом соотношение сопротивлений должны соответствовать указанным.

# 13.2.2 Светоизлучатель температурный СИТ68-01

Предназначен для эксплуатации в качестве встроенного чувствительного элемента внутри тепловых и других, в том числе комбинированных, пожарных извещателей, а также для электрического и визуального контроля за превышением температуры изделий бытового и производственно-технического назначения.

- Гистерезис менее 4 °С;
- Высокая надежность;
- Одно- или двухполярный;
- Световая индикация срабатывания.



#### Описание прибора

Светоизлучатель представляет собой микросборку, содержащую:

- 1. кристалл терморезистора прямого подогрева, имеющего близкую к релейной (пороговую) зависимость сопротивления от температуры;
- 2. по крайней мере, один кристалл светодиода;
- 3. другие элементы.

В качестве термочувствительного элемента в светоизлучателе используется пленка из двуокиси ванадия (VO2), обладающая при температуре окружающей среды (68±1) °С фазовым переходом, который сопровождается скачкообразным изменением сопротивления.

Для световой индикации о перегреве в светоизлучателе используются кристаллы светодиодов на основе композиции Ga-As-Al

При увеличении температуры светоизлучателя выше 68 °С сопротивление термочувствительного элемента и всей электрической цепи скачкообразно уменьшается, протекающий ток увеличивается, а кристалл светодиода, включенного в прямой полярности, излучает видимый свет.

В связи с выделением кристаллами светодиодов дополнительного тепла при срабатывании светоизлучателя и существованием гистерезиса в зависимости сопротивления терморезистора от температуры, существует разница между температурой срабатывания светоизлучателя и температурой возврата светоизлучателя в исходное состояние, называемое гистерезисом или зоной неопределенности (ДТг).

### Зависимость зоны неопределенности от протекающего тока через светоизлучатель:

| I, мА   | 2   | 10    | 20    |
|---------|-----|-------|-------|
| ΔTr, °C | 3-7 | 10-30 | 15-60 |

Для возврата светоизлучателя в исходное состояние после срабатывания, его необходимо охладить до температуры (Гср-  $\Delta$ Tr) °С или кратковременно прервать протекающий через него ток.

| Полярность                                                                                                                                                          | однополярные и двухполярные                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Номинальное прикладываемое напряжение, обеих полярностей                                                                                                            | От 3,0 до 27,0 В                                                                                                                                              |
| Температура срабатывания                                                                                                                                            | (68±1) °C                                                                                                                                                     |
| Макс. допустимый постоянный ток, обеспечиваемый дополнительным ограничивающим резистором или внешней цепью, в диапазоне температур окружающей среды от Тср до 80 °C | не более 20 мА                                                                                                                                                |
| Сила света при максимально допустимом постоянном токе светоизлучателя                                                                                               | не менее 2 мкд                                                                                                                                                |
| Цвет свечения                                                                                                                                                       | Красный                                                                                                                                                       |
| Средняя наработка до отказа                                                                                                                                         | 120000 ч                                                                                                                                                      |
| Габаритные размеры:                                                                                                                                                 | <ul> <li>норпуса: Ø 4,8 мм, l=5 мм</li> <li>проволочных выводов: Ø 0,5 мм, l=13,5; 23 мм</li> <li>лепестковых выводов: l=25; 33,5 мм (под винт М3)</li> </ul> |
| Macca                                                                                                                                                               | не более 0,40 г                                                                                                                                               |
| Климатическое исполнение                                                                                                                                            | УХЛ 3.1 по ГОСТ 15150-69                                                                                                                                      |
| Условия эксплуатации:                                                                                                                                               | <ul> <li>температура окружающей среды -50+125 °C</li> <li>относительная влажность (45-80) %</li> <li>атмосферное давление (84,0-106,7) кПа</li> </ul>         |

### 14.1 Устройство пусковое температурное УПТ-01

Предназначено для автоматического запуска модулей порошкового пожаротушения (порошковых модулей) и передачи сигнала тревоги по линии связи. Жесткозакрепленные модули порошкового пожаротушения с автоматическим запуском применяют для тушения пожара без участия человека в производственных, складских, бытовых помещениях, гаражах, торговых залах, в шкафах с электрооборудованием и др.

- УПТ-01 может эксплуатироваться в очень жестких условиях, характерных при тушении пожаров. Имеет индикатор для контроля заряда элемента питания.
- Благодаря низкому энергопотреблению, средний срок службы устройства до смены элемента питания составляет не менее 10 лет. Таким образом, оснащенные УПТ-01 порошковые модули позволяют в 3 раза сократить затраты потребителя на демонтаж порошковых модулей для замены элемента питания.

#### Описание прибора

Устройство содержит два термореле РТ-1 с размыкающим контактом, включенные последовательно и находящиеся в зонде с перфорацией; электронный модуль; элемент питания CR2032; клкмы для подключения внешнего шлейфа и исполнительного устройства модуля пожаротушения. При срабатывании устройства оно подает в модуль пожаротушения электрический импульс и замыкает шлейф (ШПС) с ограничением максимального тока.

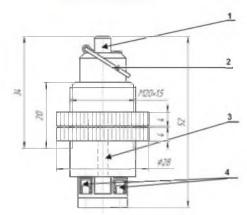
УПТ-01 устанавливается на порошковый модуль при помощи кронштейна и подключается к модулю через гермоввод корпуса. Запуск оснащенного УПТ-01 модуля происходит при достижении температуры окружающего воздуха +70 °С.



| Температура срабатывания                            | (70±5) °C                                               |
|-----------------------------------------------------|---------------------------------------------------------|
| Диапазон напряжений в шлейфе (ШПС)                  | 12 70 B                                                 |
| Потребляемый ток                                    | 0.01 мА (в дежурном режиме)<br>20 мА (при срабатывании) |
| Напряжение импульса при срабатывании                | более 8 В длительностью 5 мс на нагрузку 10 16 Ом       |
| Количество срабатываний до разряда элемента питания | не менее 10                                             |
| Степень защиты                                      | IP54                                                    |
| Температура эксплуатации                            | -40+50 °C                                               |
| Устойчивость к воздействию температур               | -50+75 °C                                               |
| Средний срок службы                                 | не менее 10 лет                                         |
| Элемент питания                                     | 3,0±0,3 B                                               |
| Габаритные размеры                                  | 91х71 мм                                                |
| Macca                                               | не более 0,08 гр                                        |
|                                                     |                                                         |

## 14.2 Устройство пусковое ручное УПР-01

Устройство пусковое ручное УПР-01 предназначено для комплектования нового типа модулей порошкового пожаротушения - переносных модулей, которые применяют для активного тушения пожара так же, как тушат пожар струей воды.


- УПР-01 не содержит элементов питания, а значит всегда готово к работе.
- УПР-01 может эксплуатироваться в очень жестких условиях, что и требуется при тушении пожаров.
- После срабатывания, УПР-01 можно взвести и использовать повторно.
- УПР-01 имеет компактный металлический корпус и легко крепится при помощи двух гаек на корпусе модуля порошкового пожаротушения.

### Описание прибора

При выдергивании чеки встроенный электромагнитный генератор вырабатывает эдс, достаточную для срабатывания воспламенителя и запуска модуля порошкового пожаротушения.

УПР-01 жестко крепится на боковой поверхности модуля. Для срабатывания модуля необходимо просто выдернуть чеку.





- 1. Шток
- предохранительная
- 3. Возвратное отверстие
- 4. Контакты

| Параметры электрического импульса на клеммах при запуске | 5,5 В длительностью 5 мс на нагрузке 15 Ом                                        |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|
| Степень защиты                                           | <ul><li>без защитного колпачка: IP40</li><li>с защитным колпачком: IP54</li></ul> |
| Температура эксплуатации                                 | -50+80 °C                                                                         |
| Средний срок службы                                      | не менее 10 лет                                                                   |
| Гарантийный срок хранения                                | 1 год                                                                             |
| Габаритные размеры                                       | 28х52 мм                                                                          |
| Macca                                                    | не более 0,07 гр                                                                  |

## 15.1 Блок управления электрокаменкой БУК-1

Автоматическое включение электрокаменки через заданное время, поддержание заданной температуры в сауне; Автоматическое отключение электрокаменки через заданное время;

Отключение электрокаменки в случае аварийных режимов (срабатывание защитного термовыключателя; выхода из стоя датчика температуры; короткого замыкания нагрузки).

# Количество фаз напряжения питания: 1 — одна фаза; 3 — три фазы Мощность: 6,0; 9,0; 12 кВт

- Высокая точность контроля и поддержания температуры
- Одновременная индикация температуры и времени
- Дополнительная защита от повышения температуры
- Эргономичный, влагозащищенный корпус





### Описание прибора

БУК-1 предназначен для управления работой электрокаменки с однофазным или трехфазным включением на симметричную нагрузку.

В качестве датчика температуры для блока применяется датчик температуры на основе полупроводникового чувствительного элемента ТС1047. Рекомендуется применять датчик температуры со встроенным термовыключателем ТС.п/п.сауна.

Номинальное напряжение питания, мощность электрокаменки, номинал встроенного автоматического выключателя в зависимости от модификации блока — в соответствии с таблицей ниже.

Допустимое отклонение напряжения питания от номинала  $\pm 10\%$ , частота  $50 \pm 1\Gamma$ ц.

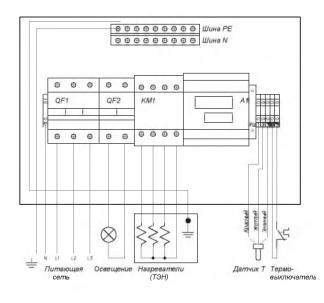
| Модификация блока | Напряжение питания | Мощность, кВт | Автоматический выключатель |
|-------------------|--------------------|---------------|----------------------------|
| БУК-1-1-6,0       | 220B 1¢. 1N        | 6,0           | 1Π 32A                     |
| БУК-1-3-6,0       | 380B 3¢. 1N        | 6,0           | 3П 13А                     |
| БУК-1-3-9,0       | 380B 3ф. 1N        | 9,0           | 3П 20А                     |
| БУК-1-3-12,0      | 380B 3¢. 1N        | 12,0          | 3П 25А                     |

Блок позволяет подключить дополнительную нагрузку, например лампы освещения сауны, суммарной мощностью не более 400 Вт.

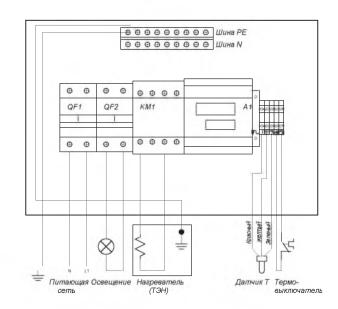
Блок имеет вход для подключения термовыключателя, при срабатывании (превышении температуры) контакты термовыключателя должны размыкаться.

Блок обеспечивает индикацию выхода температуры за пределы измеряемого диапазона:

- выше верхней границы диапазона, при этом на цифровом индикаторе мигает символ «-А»;
- ниже нижней границы диапазона, при этом на цифровом индикаторе мигает символ « А».


Блок обеспечивает индикацию при обрыве в цепи датчика температуры, при этом на цифровом индикаторе отображается символ «¬\_А» и мигает индикатор «Авария».

Блок обеспечивает индикацию срабатывания термовыключателя, при этом мигает индикатор «Авария».


#### Технические характеристики

| Диапазон измерения и регулирования температуры          | -40+125 °C                                     |
|---------------------------------------------------------|------------------------------------------------|
| Пределы допускаемой погрешности измерения температуры   | ±3 °C                                          |
| Шаг установки температуры                               | ±0,1 °C                                        |
| Диапазон установки времени до включения электрокаменки  | от 0 до 24 ч с шагом 1 мин                     |
| Диапазон установки времени до выключения электрокаменки | от 1 мин до 6 ч с шагом 1 мин                  |
| Потребляемая мощность                                   | не более 15,0 ВА (без учета мощности нагрузки) |
| Средняя наработка на отказ                              | не менее 20000 ч                               |
| Габаритные размеры                                      | 305х215х120 мм                                 |
| Macca                                                   | не более 2,5 кг                                |

### Схема подключения блоков типа БУК-1-3-6,0; БУК-1-3-9,0; БУК-1-3-12,0.



#### Схема подключения блока типа БУК-1-1-6,0



QF1, QF2 — автоматический выключатель; **КМ1** – контактор модульный;

A1 — терморегулятор;

FU – держатель предохранителя 2A/250B;

Шина РЕ – шина заземления

1 – **5**, **N** – клеммы;

**Шина N** — шина нейтрали;

### 15.2 Шкаф управления освещением ШУО

Шкафы управления освещением ШУО—1/10 и ШУО—3/15 предназначены для автоматического включения и выключения уличного освещения по заданному алгоритму и контроля потребления электроэнергии. Использование шкафов управления освещением позволяет в значительной степени экономить электроэнергию.

### Описание прибора

Шкаф управления освещением комплектуется таймером реального времени TPB-02. Таймер снабжен цифровым светодиодным четырехразрядным индикатором, который отображает значения текущего времени в часах и минутах и индицирует значения уставок в режиме программирования.

При достижении установленного значения времени, либо уровня освещенности (при использовании датчика освещенности), происходит срабатывание выходного реле таймера.

Таймер имеет два независимых канала управления, для каждого из которых можно установить свои две временные уставки.

При необходимости шкаф управления освещением может быть укомплектован датчиком освещенности. Время включения и выключения от датчика каждого из каналов таймера, при достижении установленного уровня освещенности, составляет около 2 минут.

На передней панели шкафа расположено стеклянное окошко для считывания показаний электросчетчика.



| Характеристики                      | ШУ0-1/10                  | ШУ0—3/15                          |  |  |  |
|-------------------------------------|---------------------------|-----------------------------------|--|--|--|
| Род тока и напряжение силовой цепи  | однофазный — (220±22) В   | трехфазный — (380±38) В           |  |  |  |
| Суммарная мощность нагрузки         | 10,0 кВт                  | 15,0 кВт                          |  |  |  |
| Тип применяемого электросчетчика    | CE 101 R5 145M 220B 5-60A | ЦЭ6803B/1 1T 220B 5—50A 4пр. М6 P |  |  |  |
| Степень защиты корпуса              | герметичный, IP54         |                                   |  |  |  |
| Температура окружающего воздуха     | -40+50 °C                 |                                   |  |  |  |
| Наличие стеклянного окошка          | Имеется                   |                                   |  |  |  |
| Расположение гермовводов на корпусе | Сверху или снизу          |                                   |  |  |  |

## 16.1 Корпуса для приборов



### 1. Корпус на DIN-рейку Д1

- Габаритные размеры: 72х88х54 мм;
- Материал: ударопрочный ABS-пластик;
- Цвет: черный, серый;
- Степень защиты: IP20.



### 4. Корпус переносного прибора с USB П3

- Материал: пластмасса ABS+PC;
- Различные исполнения:
- Цвет: белый или черный.

Корпус изготовлен в исполнении с окном под индикатор и без окна, с двумя кнопками, с вырезом под USBразъем, с батарейным отсеком под элемент питания типа 1/2АА, с двумя вариантами колпачков: под встроенный датчик и датчик-зонд.



### 2. Корпус переносного прибора П1

- Габаритные размеры: 73х140х27 мм;
- Материал: ударопрочный ABS-пластик;
- Цвет: черный, серый, белый, красный, синий;
- Степень защиты: IP40.



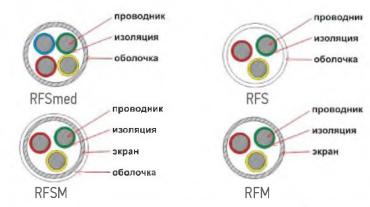
#### 5. Ручка для датчика Р1

- Материал: ударопрочный ABS-пластик;
- Цвет: черный.

Комплект включает в себя: деталь из пластмассы - 2 шт., винт M3 - 2 шт., гайка M3 - 2 шт., кабельный уплотнитель из ПВХ пластиката - 1 шт.



### 3. Корпус переносного прибора П2


- Материал ABS
- Габаритные размеры: 165х81х31 мм
- Класс защиты: ІР43
- Батарейный отсек: 4 x R03,AAA
- Прорезиненные боковые стороны
- Защелка батарейного отсека
- Затемненное стекло

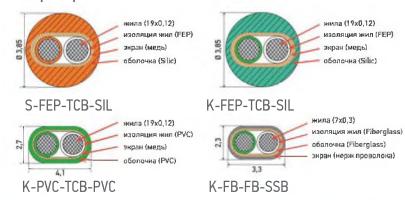
### 16.2 Кабели

# 1. Медные гибкие высокотемпературные кабели для изготовления и подключения термопреобразователей сопротивления

Кабели состоят из трех многопроволочных медных жил с изоляцией из литого фторопласта(FEP), могут иметь экран из луженой медной проволоки, оболочку из силиконовой резины, три жилы имеют различный цвет изоляции: красный, желтый, зеленый, различаются также по сечению и строению жил.

- Рабочий диапазон температур: -60...+200°С.
- Исп. напряжение: 1500В (1 мин.), 3000В (0,25 с.).
- Рабочее напряжение: 300В.




#### Технические характеристики

| Тип кабеля    | Структура<br>проводника<br>(кол-во/диаметр<br>проволок) | Диаметр<br>проводника<br>жилы, мм | Толщина<br>изоляции<br>жилы, мм | Сопротивление<br>жилы при 20<br>°C, Ом/км | Экран | Толщина<br>оболочки, мм | Внешний<br>диаметр, мм |
|---------------|---------------------------------------------------------|-----------------------------------|---------------------------------|-------------------------------------------|-------|-------------------------|------------------------|
| RFS 3x0,12    | 7/0,15                                                  | 0,46                              | 0,17                            | 152                                       | -     | 0,54                    | 2,8±0,1                |
| RFS 3x0,2     | 19/0,12                                                 | 0,6                               | 0,22                            | 89                                        | -     | 0,75                    | 3,75±0,15              |
| RFS 3x0,5     | 19/0,2                                                  | 0,93                              | 0,25                            | 35                                        | -     | 0,8                     | 4,68±0,15              |
| RFSM 3x0,12   | 7/0,15                                                  | 0,46                              | 0,17                            | 152                                       | +     | 0,76                    | 3,75±0,15              |
| RFM 3x0,12    | 7/0,15                                                  | 0,46                              | 0,17                            | 152                                       | +     | -                       | 2,2±0,15               |
| RFSmed 4x0,08 | 7/0,1                                                   | 0,1                               | 0,1                             | 360                                       | -     | 0,5                     | 2,2±0,1                |

# 2. Гибкие высокотемпературные термопарные и термокомпенсационные кабели для подключения термоэлектрических преобразователей

Кабели состоят из двух термоэлектродных многопроволочных жил с изоляцией из высокотемпературного материала, могут иметь экран из медной или нержавеющей проволоки, оболочку из высокотемпературного материала. Цвет кабеля и цвета изоляции жил соответствуют международным стандартам для соответствующего типа термопары.

Максимальная погрешность в рабочем диапазоне температур 2,2 °C.



| Наименование     | Тип    | Материал<br>электродов | Сечение<br>жил, мм2 | Материал<br>изоляции жил | Экран       | Материал<br>оболочки | Внешний<br>диаметр, мм | Макс.<br>температура, °С |
|------------------|--------|------------------------|---------------------|--------------------------|-------------|----------------------|------------------------|--------------------------|
| S-FEP-TCB-SIL    | S      | медь/медь-никель       | 2x0,2               | фторопласт               | медь        | силикон              | 3,85                   | 200                      |
| K-FEP-TCB-SIL    | K      | хромель/алюмель        | 2x0,2               | фторопласт               | медь        | силикон              | 3,85                   | 200                      |
| K-PVC-TCB-PVC    | K      | хромель/алюмель        | 2x0,2               | ПВХ(PVC)                 | медь        | ПВХ (PVC)            | 4,1x2,7                | 105                      |
| K-FB-FB-SSB      | 7/0,15 | 0,46                   | 0,17                | 152                      | +           | 0,76                 | 3,75±0,15              |                          |
| (аналог СФКЭ ХА) | K      | хромель/алюмель        | 2x0,5               | асбостеклонить           | Нерж. сталь | -                    | 3,3x2,3                | 400                      |

# 16.3 Соединители медные и термопарные, разъемы

### 1. Соединители для переносных измерителей температуры



CCP-K

Витой провод, с плоским разъемом – вилкой-мини для подключения термопар типа К, 2 м, зеленый.



LT-001

Витой провод, с плоским разъемом – вилкой-мини для подключения термопар типа К, 2 м, желтый.



CC-RTD

Витой провод 4-х жильный для подключения термосопротивлений, 2 м, черный.



LT-004

Витой провод 3-х жильный с плоским разъемом-вилкой-мини для подключения термосопротивлений по 2-х и 3-х проводной схеме, черный.



Провод 4-х жильный медный гибкий с разъемом круглым М12 и ответной панельной частью. Золоченные контакты 6 мкм, длина 1 м. Степень защиты ІР68

#### 2. Разъемы



ZZ-M09-S.

Плоский мини-разъем, для подключения термопар типа ТПП (S), оранжевый.



K-11/12.

Плоский мини-разъем для подключения термопар типа XA(K), зеленый (желтый).



RTD-11/12.

Плоский мини-разъем с тремя контактами, для термосопротивлений.



2UB3001.

USB-разъем панельный герметичный, IP68.



Крышка для USB-разъема 2UB3001.

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93